Abstract:
Provided is an integrated gas discharge tube. In the integrated gas discharge tube, the structure of the gas discharge tube is regulated into an upper cover and an insulative base, and the internal side surface and the external side surface of the bottom surface of the insulative base are respectively subject to electrode integration, so that the discharge effect of the gas discharge tube is effectively increased and the preparation process and the preparation flow of a multi-terminal-to-ground gas discharge tube are greatly simplified so as to greatly simplify the preparation process and to realize batch production and high integration of the gas discharge tube. Also provided is a preparation method for an integrated gas discharge tube.
Abstract:
A flat-panel display device having a transparent first plate and a second plate which are disposed in parallel with each other and cooperate to define therebetween an air-tight space in which light is generated for emission through the first plate, the display device including a sealing material for air-tightly sealing the air-tight space along a periphery of the first and second plates, and metallic thin sheets bonded with the sealing material to end faces of the first and second plates such that the metallic thin sheets cover the end faces. The display device is manufactured by applying the sealing material to the end faces such that a peripheral portion of the air-tight space is filled with a mass of the sealing material, forcing the metallic thin sheets onto the end faces such that the metallic thin sheets cover the end faces, and heating the sheets and the sealing material firing the sealing material for air-tightly bonding together the two plates while bonding the metallic thin sheets to the end faces through the sealing material.
Abstract:
A glass composition substantially free from lead and bismuth and containing vanadium oxide and phosphor oxide as main ingredients, wherein the sintered glass of the glass composition exhibits 109 Ωcm or more at 25 ° C.
Abstract:
A flat panel display includes an insulating substrate with a display element, a cover substrate facing and joined with the insulating substrate, and a frit formed along an edge between the insulating substrate and the cover substrate. Thus, the present invention provides a flat panel display that can minimize inflow of oxygen and moisture from the outside.
Abstract:
In some embodiments, a gas discharge tube (GDT) can include first and second electrodes each including an edge and an inward facing surface, such that the inward facing surfaces of the first and second electrodes face each other. The GDT can further include a sealing portion implemented to join and seal the edge portions of the inward facing surfaces of the first and second electrodes to define a sealed chamber between the inward facing surfaces of the first and second electrodes. The GDT can further include an electrically insulating portion implemented to provide a surface in the sealed chamber and to cover a portion of the inward facing surface of each of at least one of the first and second electrodes such that a leakage path within the sealed chamber includes the surface of the electrically insulating portion.
Abstract:
Gas discharge tube having glass seal. In some embodiments, a gas discharge tube can include an insulator layer having first and second sides and defining an opening, and first and second electrodes that cover the opening on the first and second sides of the insulator layer, respectively. The gas discharge tube can further include a first glass layer implemented between the first electrode and the first side of the insulator layer, and a second glass layer implemented between the second electrode and the second side of the insulator layer, such that the first and second glass layers provide a seal for a chamber defined by the opening and the first and second electrodes.
Abstract:
It is an object of the present invention to provide an improved structure having an adequate strength to satisfy a requirement of making a thin electro-optical panel. The electro-optical panel forms a sealing area having an electro-optical functional section between the support substrate and the sealing member. The support substrate has a lead-out area containing an area for forming lead-out wiring extending from the sealing area and for connecting or mounting the driving means (IC chip, flexible substrate and the like) to the lead-out wiring. The sealing member has protruding reinforcement sections protruding from the sealing area S on to the lead-out area. The support substrate and the sealing member are bonded together through an adhesive layer, thereby forming an adhesive area surrounding the sealing member. It is another object of the present invention to provide an improved process of producing a plurality of self-emission panels formed by cutting a mother panel into a plurality of unit panels, to prevent lead-out wiring portions from being wounded during the cutting process, thereby improving the yield of production. A further object of the invention is to improve the efficiency of inspection step, thereby improving the productivity of manufacturing process. A mother self-emission panel comprises a mother support substrate having formed thereon a plurality of self-emission sections, and a mother sealing member having arranged thereon a plurality of sealing sections corresponding to the plurality of self-emission sections. When the mother support substrate and the mother sealing member are bonded together, a plurality of sealing areas will be formed to seal the plurality of self-emission sections corresponding to the plurality of sealing sections. The mother support substrate has a plurality of lead-out areas having formed thereon a plurality of lead-out wiring portions extending from the plurality of self-emission sections to the outsides of the sealing areas. The mother sealing member has a plurality of hole processing portions for exposing the lead-out wiring portions.
Abstract:
A gas discharge tube (GDT) can include first and second electrodes each including an edge and an inward facing surface, such that the inward facing surfaces face each other. The GDT can further include a sealing portion implemented to join the edge portions of the first and second electrodes to form a chamber between the inward facing surfaces of the first and second electrodes. The GDT can further include an electrically insulating portion implemented to provide a surface that covers a portion of the inward facing surface of each of at least one of the first and second electrodes such that a leakage path between the first and second electrodes includes a path on the surface of the electrically insulating portion.
Abstract:
A glass composition substantially free from lead and bismuth and containing vanadium oxide and phosphor oxide as main ingredients, wherein the sintered glass of the glass composition exhibits 109 Ωcm or more at 25° C.
Abstract:
The bonding method for a vent pipe of a display panel includes the step of preparing the bonding member on the periphery of the flange portion of the vent pipe, the step of interposing a buffer member made of a low-melting point glass flit having a softening temperature higher than that of the bonding member between a contact face to the display panel of the flange portion of the vent pipe and the display panel, and, in a state in which the flange portion of the vent pipe is pressed onto the display panel face by a pressing member so that the vent pipe is fixed, the step of heating the bonding member and the buffer member to a temperature to be softened so that the flange portion of the vent pipe is bonded to the display panel through the fused bonding member.