Abstract:
A reading device includes a position reference member and a reader. The position reference member has a reference pattern that includes a line extending in a prescribed direction. The position reference member is configured to relatively move in a direction orthogonal to the prescribed direction. The reader includes a plurality of sensor chips, each of the sensor chips including a plurality of pixels. The reference pattern corresponds to each of the sensor chips of the reader.
Abstract:
Provided is an image reading device including an irradiation section that irradiates a reading position with light, a color chart that includes plural color patches, and that is provided on a curved surface of a rotatable roller, an image capturing section that captures an image of the color chart at the reading position, and that outputs image signals which express the captured image, a correction section that corrects the image signals using a correction coefficient corresponding to the curved surface, and a calibration section that performs calibration using the image signals, which are corrected by the correction section, and representative color values of the plural color patches, the representative color values being stored in advance.
Abstract:
An image forming apparatus includes a registration unit which performs color registration correction by using a registration sensor, an image forming unit which forms a preset first mark whose range is greater than a range recognizable by the registration sensor on an image forming medium, and a storage which stores a specific area of an image forming medium recognizable by the registration sensor by using the formed preset first mark. The image forming apparatus further includes a controller which controls the image forming apparatus to form a preset second mark to perform color registration correction within a range recognizable by the registration sensor by using information regarding the specific area which was previously stored in the storage, and the controller controls the registration unit to perform color registration correction by using the formed preset second mark.
Abstract:
A method for aligning multi-channel digital image data for a digital printer having a plurality at least one printhead is described. One or more spatial adjustment parameters are determined for each of the printheads. The spatial adjustment parameters can be determined by comparing locations of test pattern indicia in a printed test pattern to predefined reference indicia locations. Digital image data for the non-reference printheads is modified by designating an input pixel neighborhood within which an image pixel should be inserted or deleted, comparing the image pixels in the input pixel neighborhood to a plurality of predefined pixel patterns to identify a matching pixel pattern; and determining a modified pixel neighborhood responsive to the matching pixel pattern.
Abstract:
A control device performs: acquiring an optical measured scan value; setting a measured offset using the measured scan value by reference to predetermined correlations; and determining a control value using the measured offset amount. The control value is used for controlling an amount of colorant to be ejected during printing. In the predetermined correlations, a first pair of scan values is associated with a first pair of offsets. A second pair of scan values is associated with a second pair of offsets. The first and second pair has a first and second scan difference between the scan values, respectively. The first and second pair of offsets has a first and second offset difference between the offsets, respectively. The first scan difference is different from the second scan difference. The first offset difference is same as the second offset difference.
Abstract:
An image reading apparatus includes an image reader, an image adjuster and an execution controller that causes the image reader to read an adjustment document and causes the image adjuster to adjust image data generated by the image reader. The adjustment document includes line images and parameter images at positions spaced apart in a main scanning direction in a margin area where the line images are not provided. The parameter images indicate parameters used in image adjustment processing. The execution controller judges whether the image data corresponding to predetermined positions in the main scanning direction coincide, selects one of the image data judged to coincide, and causes the image adjuster to perform the image adjustment using the selected image data and the parameter indicated by the image data generated by reading the parameter image at the position in the main scanning direction of the selected image data.
Abstract:
A method and system for generating a document having a void pantograph highlight pattern is presented. The method includes computing a score for a void pantograph highlight pattern layer in relation to a document formatted content layer, incrementing a relative position of the void pantograph highlight pattern layer and the document formatted content layer, repeating the computing and the incrementing steps to obtain a plurality of scores at a plurality of relative positions, evaluating the plurality of scores to determine an optimal alignment, and printing the document using variable-data printing techniques, wherein the printed document has a multi-layer architecture including the document formatted content layer and the void pantograph highlight pattern layer. The system includes a control processor, a score computation unit and an evaluation unit. The control processor provides a printer with data containing a multi-layer architecture document having a document formatted content and a void pantograph highlight pattern.
Abstract:
An image processing apparatus includes an image forming unit, an image control unit, a sensor, and a correction unit. The image control unit controls the image forming unit to perform toner refresh which is an operation of outputting deteriorated toner at a high density, and controls the image forming unit to form a predetermined pattern. The sensor measures a density value of the formed image. The correction unit corrects the toner density for a high-density operation using the value measured from the image formed during the toner refresh and corrects the toner density for at least a low-density operation using the value measured from the predetermined pattern.
Abstract:
An image reading apparatus includes: a light source that generates light by synthesizing light from different illuminants and irradiates an irradiated object with the generated light; a reading unit that reads light irradiated by the light source and reflected by the irradiated object and generates image information in a first color space on the irradiated object; a color conversion unit that converts the image information in the first color space into image information in a second color space with a color conversion factor group; and a color conversion factor group setting unit that acquires from the reading unit the image information generated by using, as the irradiated object, a color sample formed in a color of light emitted by one of the illuminants, determines the color conversion factor group to be used, according to the acquired image information, and sets the color conversion factor group to the color conversion unit.
Abstract:
A method of measuring a display delay time includes a step where a display pattern displayed on a first display including i (i is a natural number greater than 2) display elements is switched to a display pattern other than the display pattern at every elapse of a pattern continuation time, and j (j is a natural number, 1