Abstract:
In an apparatus in which when a photothermographic material is produced, a photosensitive layer liquid coating composition including a silver component and a non-photosensitive protective layer liquid coating composition are applied onto a web employing a slot coater, a coating apparatus for producing a photothermographic material wherein the slot coater is constituted so that the center-line surface roughness Ra of the lip plane, which comes into contact with at least the photosensitive layer liquid coating composition, is equal to or less than 0.5 nullm.
Abstract:
In order to provide a walk-on platform arrangement, comprising at least one first sub-platform, which is movable from a rest position in a direction of extension into a working position, and a second sub-platform, which in the working position is disposed behind the first sub-platform, wherein a rear boundary edge of the first sub-platform and a front boundary edge of the second sub-platform in the rest position are spaced vertically apart from one another, with which platform arrangement the risk of accident for an operative walking on the platform arrangement in the working position is reduced, it is proposed that the platform arrangement comprises a guide system, by means of which the relative motion between the first sub-platform and the second sub-platform as the first sub-platform moves into the working position is guided in such a way that the vertical distance between the rear boundary edge of the first sub-platform and the front boundary edge of the second sub-platform in the working position is smaller than in the rest position.
Abstract:
An apparatus and method for evenly applying an atomized adhesive for bonding a die to a leadframe is disclosed. In one embodiment, the apparatus includes a hood in communication with an air supply and a vacuum plenum. The hood and vacuum plenum encompass a semiconductor device component located in a target area during adhesive application so that the adhesive is selectively applied to specific portions of the leadframe or other semiconductor device component and adhesive is not allowed outside the system. A mask or stencil may be employed to further prevent the application of adhesive to undesired areas. An air purge may be employed to direct the adhesive mist toward the component to be coated. In another embodiment, a fine adhesive spray is directed against the surface of the workpiece to be coated, selected areas being masked to prevent coating. Wafers may be coated as well as leadframes.
Abstract:
Using a scan coating method, a liquid film is formed on a substrate having a temperature distribution for correcting a temperature distribution of a liquid film caused by the heat of evaporation due to the volatilization of a solvent contained in the liquid film, and then the solvent is removed from the liquid film to form a coating film.
Abstract:
An apparatus and method are provided for applying adhesive to an outer circumference of a section of tubing. The apparatus includes opposed grippers with concave adhesive transfer areas that can be moved into surrounding relationship with the tubing. Adhesive dispensing passages communicate with the adhesive transfer areas for delivering adhesive to the tubing. Counterbores are at opposed ends of the adhesive transfer areas and communicate with a vacuum source for removing excess adhesive.
Abstract:
An apparatus and method for plating a workpiece. The apparatus comprises, generally, an anode, a cathode, and a selective anode shield/material flow assembly. In use, both the anode and the cathode are immersed in a solution, and the cathode is used to support the workpiece. During an electroplating process, the anode and the cathode generate an electric field emanating from the anode towards the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece. The selective shield/material flow assembly is located between the anode and the cathode, and forms a multitude of adjustable openings. These opening have sizes that are adjustable during the electroplating process for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material on the workpiece. The selective shield/material flow assembly can also be used with an electroless plating system. At least one selective shield material flow mechanism is used in a selective shield material flow assembly.
Abstract:
A change station for atomizer (7) and other tools that contains a carousel-like rotatable and/or linearly movable mount (112) is arranged on the wall of the cabin of a coating installation. The arrangement is such that the storage locations of the change station are accessible both to the coating machine (151) in the cabin and from outside the cabin.
Abstract:
An apparatus for processing objects includes an elevated tubular frame rail mounting a four axis robot arm with a tool such as a painting applicator. The robot is attached to a mounting base that moves along the rail permitting painting of the top and/or side of a vehicle body. Electrical power and fluid lines can be routed through the rail to the robot. Two such rails and multiple robots can be combined as a module for installation in a new or an existing painting booth.
Abstract:
Method and assembly for forming a paper or board web and a product made using the method. According to the method, the web (11) is made from fibers and then the web (11) is treated with pigment particles. The web is treated with microscopic pigment particles whose average size is so small as to permit the particles to adhere to each other by van der Waals forces. The particles are transferred to the web and adhered thereto advantageously using an ion-blast technique.
Abstract:
A device for fabricating a high-density microarray for cDNA or protein having an arbitrary pattern comprises an electrospray part for electrostatically spraying solutions containing a plurality of kinds of biologically active samples one by one, a support part supporting sample chips on which samples in the solutions sprayed from the electrospray part are deposited, a mask part disposed between the electrospray part and the support part and having holes the number of which is the same as that of the sample chips so as to selectively deposit the samples simultaneously in the adequate positions corresponding to the sample chips, a moving part for fabricating microarrays at a time by relatively moving the sample chip support part and the mask part and depositing the samples on the sample chips. Therefore the device can fabricate a large number of inexpensive high-density microarrays.