Abstract:
A slit nozzle is positioned above a surface of a substrate placed in a rotary coater, and, while the slit nozzle is translated parallel to the surface of the substrate a coating solution is ejected from the slit nozzle toward the glass substrate under conditions such that the effects of surface tension of the solution are minimized or substantially cancelled out, to uniformly coat the coating solution on substantially the entire surface of the substrate with minimum wasting of the solution.
Abstract:
A coating layer forming apparatus for minimizing the amount of the coating solution when forming a coating layer on a part and enhancing a dimensional precision of a formed surface of the coating layer. The coating layer forming apparatus has a rotation supporting device, a feeder (15), a layer former, and a coating removing device, maintains the inclined angle of a coating former for forming the coating layer at 30 to 70 degrees with respect to a tangential direction of rotation of a coating of a coating surface, and removes excess coating solution deposited on the coating former by a coating removing device.
Abstract:
Extrusion coating of circular and other substrates is taught with a linear extrusion head in a linear motion utilizing a chuck assembly providing a coating bead forming surface. The coating bead forming surface allows for the coating bead to be at a steady state at all points at which the extrusion head interfaces with the substrate during the linear motion. Various configurations of chuck assemblies are taught to allow for improved handling of the substrate, deploying of the chucks in existing machinery, and simplified cleaning of the coating bead forming surface. Additionally, adaptation of the chuck assembly for discouraging undesired migration of the coating material is taught.