Abstract:
PROBLEM TO BE SOLVED: To facilitate to mount a spacer wall between a face plate and a back plate of a flat panel display. SOLUTION: A coupling electrode is installed on the face plate so that an electrostatic force may be added on spacer stands 111, 112. By this, the spacer stands are supported at a constant position during mounting of the spacer wall. Since the spacer wall is expanded mechanically and/or thermally, a tensile force useful to correct waving distortion of the spacer wall is given to the spacer wall so that it can be contracted. COPYRIGHT: (C)2004,JPO
Abstract:
A method of fabricating a support structure (118). In one embodiment, the method is comprised of providing a mold (220). The mold (220) is for defining the physical dimension of the support structure. The mold (220) is disposed upon a substrate surface (210). In one embodiment, the method is further comprised of depositing a powder (230) into the mold (220). The present method is further comprised of compacting the powder (230) deposited in the mold (220). The compacting forms the support structure (118). In one embodiment, the method is further comprised of removing the mold (220) from the substrate surface (210) upon which it is disposed. The removal of the mold (220) exposes the support structure (118). The fabricated support structure (118) is then implementable during assembly of a display device (100). In one embodiment, the powder (230) deposited in the mold (220) is a metal powder (230).
Abstract:
An electron-emitting device (20, 70, 80, or 90) contains an electrode, either a control electrode (38) or an emitter electrode (32), having a specified portion situated off to the side of the bulk of the electrode. For a control electrode, the specified portion is an exposure portion (38EA or 38EB) having openings that expose electron-emissive elements (50A or 50B) situated over an emitter electrode. For an emitter electrode, the specified portion is an emitter-coupling portion situated below at least one electron-emissive element exposed through at least one opening in a control electrode. Configuring the device in this way enables the control-electrode-to-emitter-electrode capacitance to be quite small, thereby enhancing the device's switching speed. If the specified portion of the electrode becomes short circuited to the other electrode, the short-circuit defect can be removed by severing the specified portion from the remainder of its electrode.
Abstract:
A method for forming an electrical connection via through the interlayer dielectric sandwiched between upper and lower electrode layers of a display panel substrate comprising a step (901) of depositing a passivation layer on a chromium layer overlying a conductive layer which is deposited on the interlayer dielectric, a step (903, 903(a)) of patterning and etching the passivation layer, and a step (904) of etching the interlayer dielectric using the passivation layer as a mask. One embodiment is characterized in that a convention step of depositing a second passivation layer and corresponding process steps is unnecessary. Such embodiment employs a gasous etchant comprised of a mixture of gases such as (a) sulfur hexafluoride, carbon tetrafluoride, trifluororomethane and oxygen or (b) octafluorocyclobutane, acrbon monoxide and argon to etch a silicon nitride passivation layer (step 903) and a wet etch to selectively etch a silicon dioxide interlayer dielectric (step 904). A further process step may comprise a dual resister layer etching step (906) to expose the lower electrode layer where necessary.
Abstract:
The present invention provides a spacer assembly (100) which is tailored to provide a secondary electron emission coefficient of approximately 1 for the spacer assembly (100) when the spacer assembly (100) is subjected to flat panel display operating voltages. The present invention further provides a spacer assembly (100) which accomplishes the above achievement and which does not degrade severely when subjected to electron bombardment. The present invention further provides a spacer assembly (100) which accomplishes both of the above-listed achievements and which does not significantly contribute to contamination of the vacuum environment of the flat panel display or be susceptible to contamination that may evolve within the tube. Specifically, in one embodiment, the present invention is comprised of a spacer structure (102) which has a specific secondary electron emission coefficient function associated therewith. The material comprising the spacer structure (102) is tailored to provide a secondary electron emission coefficient of approximately 1 for the spacer assembly (100) when the spacer assembly (100) is subjected to flat panel display operating voltages.
Abstract:
A light-emitting device is provided with getter material (58) that can readily be distributed in a relatively uniform manner across the device's active light-emitting portion. An electron-emitting device is similarly provided with getter material (112, 110/112, 128, 132, and 142) that can readily be distributed relatively uniformly across the active electron-emitting portion of the device. Techniques such as thermal spraying, angled physical deposition, and maskless electrophoretic/dielectrophoretic deposition can be utilized in depositing the getter material.
Abstract:
A light-emitting device (42, 68, 80, 90, or 100) suitable for a flat-panel CRT display contains a plate (54), a light-emissive region (56), and a light-reflective layer (60 or 70). The light-emitting device achieves one or more of the following characteristics by suitably implementing the light-reflective layer or/and providing one or more layers (72, 82, 92, and 100) along the light-reflective layer: (a) reduced electron energy loss as electrons pass through the light-reflective layer, (b) gettering along the light-reflective layer, (c) reduced secondary electron emission along the light-reflective layer, (d) reduced electron backscattering along the light-reflective layer, and (e) reduced chemical reactivity along the light-reflective layer.
Abstract:
An apparatus for removing contaminants from a display device (400) is disclosed. In one embodiment, an auxiliary chamber (408) is adapted to be coupled to a surface of a display device (400) such that contaminants within the display device can travel from the display device into the auxiliary chamber. A getter (410) is disposed in the auxiliary chamber (408). The getter is adapted to capture the contaminants once the contaminants travel from the display device (400) into the auxiliary chamber (408). In other embodiments, the getter is disposed in the border region surrounding the active area of the display.
Abstract:
The present writing reveals a method of fabricating a cathode requiring relatively few and somewhat simple steps. A novel etchant gas chemistry dispenses with needing a second passivation layer (PA2). A direct via is formed without a separate mask. Access and isolation features of a metallic gate (MG) are patterned in the same patterning operation as an associated passivation layer, dispensing with a need for separate patterning of each. Etching is effectuated with high selectivity for nitrides of silicon. The requirement for at least one passivation layer deposition, a direct via masking step, and separate patterning steps for the passivation layer and metallic gate are eliminated.
Abstract:
A multi-level matrix structure (100) for retaining a support structure within a flat panel display device. In one embodiment, the multi-level matrix structure (100) is comprised of first parallel ridges (102). The multi-level matrix structure (100) further includes second parallel ridges (104). The second parallel ridges (104) are oriented substantially orthogonally with respect to the first parallel ridges (102). In this embodiment, the second parallel ridges (104) have a height which is greater than the height of the first parallel ridges (102). Furthermore, in this embodiment, the second plurality of parallel spaced apart ridges (104) include contact portions (106) for retaining a support structure at a desired location within a flat panel display device. Hence, when a support structure is inserted between at least two of the contact portions (106) of the multi-level support structure (100), the support structure is retained in place, at a desired location within the flat panel display device, by the contact portions (106).