Abstract:
A method of fabricating a support structure (118). In one embodiment, the method is comprised of providing a mold (220). The mold (220) is for defining the physical dimension of the support structure. The mold (220) is disposed upon a substrate surface (210). In one embodiment, the method is further comprised of depositing a powder (230) into the mold (220). The present method is further comprised of compacting the powder (230) deposited in the mold (220). The compacting forms the support structure (118). In one embodiment, the method is further comprised of removing the mold (220) from the substrate surface (210) upon which it is disposed. The removal of the mold (220) exposes the support structure (118). The fabricated support structure (118) is then implementable during assembly of a display device (100). In one embodiment, the powder (230) deposited in the mold (220) is a metal powder (230).
Abstract:
The present invention provides a spacer assembly (100) which is tailored to provide a secondary electron emission coefficient of approximately 1 for the spacer assembly (100) when the spacer assembly (100) is subjected to flat panel display operating voltages. The present invention further provides a spacer assembly (100) which accomplishes the above achievement and which does not degrade severely when subjected to electron bombardment. The present invention further provides a spacer assembly (100) which accomplishes both of the above-listed achievements and which does not significantly contribute to contamination of the vacuum environment of the flat panel display or be susceptible to contamination that may evolve within the tube. Specifically, in one embodiment, the present invention is comprised of a spacer structure (102) which has a specific secondary electron emission coefficient function associated therewith. The material comprising the spacer structure (102) is tailored to provide a secondary electron emission coefficient of approximately 1 for the spacer assembly (100) when the spacer assembly (100) is subjected to flat panel display operating voltages.
Abstract:
A flat panel display apparatus comprising: a faceplate, a backplate disposed opposing said faceplate, said faceplate and said backplate adapted to be connected in a sealed environment such that a low pressure region exists between said faceplate and said backplate; a spacer assembly (900) disposed within said sealed environment, said spacer assembly supporting said faceplate and said backplate against forces acting in a direction towards said sealed environment, said spacer assembly tailored to provide a secondary electron emission coefficient of approximately 1 for said spacer assembly when said spacer assembly is subjected to flat panel display operating voltages, said spacer assembly further including a spacer structure (902); and a coating material (904) applied to at least a portion of said spacer structure, wherein said coating material is comprised of a layered material that is oriented with its basal plane parallel to a face of said spacer structure (902).
Abstract:
An electron-emitting device utilizes an emitter electrode (12) shaped like a ladder in which a line of emitter openings (18) extend through the electrode. In fabricating the device, the emitter openings can be utilized to self-align certain edges, such as edges (38C) of a focusing system (37), to other edges, such as edges (28C) of control electrodes (28), to obtain desired lateral spacings. The self-alignment is typically achieved with the assistance of a backside photolithographic exposure operation. The ladder shape of the emitter electrode also facilitates the removal of short-circuit defects involving the electrode.
Abstract:
An electron-emitting device utilizes an emitter electrode (12) shaped like a ladder in which a line of emitter openings (18) extend through the electrode. In fabricating the device, the emitter openings can be utilized to self-align certain edges, such as edges (38C) of a focusing system (37), to other edges, such as edges (28C) of control electrodes (28), to obtain desired lateral spacings. The self-alignment is typically achieved with the assistance of a backside photolithographic exposure operation. The ladder shape of the emitter electrode also facilitates the removal of short-circuit defects involving the electrode.
Abstract:
An electron-emitting device contains an electron focusing system (37 or 37A) formed with a base focusing structure (38 or 38A) and a focus coating (39 or 39A) that penetrates, preferably only pathway, into a focus opening (40) extending through the base focusing structure. The focus coating, normally of lower resistivity than the base focusing structure, is typically formed by an angled deposition technique. An access conductor (106 or 106A) is preferably electrically coupled to the lower surface of the focus coating. A potential for controlling the focusing of electrons that travel through the focus opening is provided to the focus coating via the access conductor.
Abstract:
An electron-emitting device utilizes an emitter electrode (12) shaped like a ladder in which a line of emitter openings (18) extend through the electrode. In fabricating the device, the emitter openings can be utilized to self-align certain edges, such as edges (38C) of a focusing system (37), to other edges, such as edges (28C) of control electrodes (28), to obtain desired lateral spacings. The self-alignment is typically achieved with the assistance of a backside photolithographic exposure operation. The ladder shape of the emitter electrode also facilitates the removal of short-circuit defects involving the electrode.