Abstract:
본 발명은, 저속 및 고속에서 자기 안정영역을 가질 수 있는 1 세그먼트 렉(1SL; One Segment Leg)의 강성 메커니즘과, 2 세그먼트 렉(2SL; Two Segment Leg)의 강성 메커니즘을 복합적으로 갖는 저속 및 고속주행에서 자기 안정 영역을 갖는 3 세그먼트 렉 로봇의 파라미터 설계방법을 제공한다. 따라서 저속 및 고속에 이르기 까지 자기 안정 영역을 갖고 있기 때문에, 저속 및 고속 주행에서 에너지 효율적 주행을 수행할 수 있다.
Abstract:
본 발명은 크랭크-로커 기구의 구조를 활용한 상지 재활 장치 및 그 방법에 관한 것으로서, 복수의 체결 홀을 포함하는 커플러를 크랭크 축과 로커 축 사이에 연결하고 커플러의 체결 홀에 거치대를 부착한 상태에서 사용자가 재활 운동을 할 수 있도록 함으로써, 다양한 체결 홀이 형성하는 서로 다른 회전운동 궤적에 따라 사용자가 다양한 재활 운동을 용이하게 제공받을 수 있도록 한다.
Abstract:
The present invention relates to an upper limb rehabilitation training device for performing the upper limb rehabilitation training of a hemiplegic patient and, more specifically, to an upper limb rehabilitation training device for performing rehabilitation treatment through the reconstruction of muscle and joint movement by the rotation motion of an upper limb comprising: a main body of a hexahedron which includes a space in the inner part by connecting a front case and a rear case; a first rotation member which is arranged at one side of the main body and performs rotation motion by letting a user hold a handle bar; a second rotation member which is arranged at the other side of the main body, is mechanically connected to the first rotation member with a gear, is connected by the rotation of the first rotation member and performs symmetric rotation motion; and a transmission member which changes the rotation power and rotation speed of the first rotation member by moving forward or backward according to the selective control of a user and conveys the rotation power and rotation speed of the first rotation member to the second rotation member. The upper limb rehabilitation training device enables the patient to performs the upper limb rehabilitation training of a disease part (left part or right part) by the help of a normal upper limb without the direct help of a rehabilitation therapist and is able to effectively produce the motion of the upper limb to be rehabilitated by controlling the rotation number of a normal upper limb and an upper limb to be rehabilitated.
Abstract:
A robot end effecter, which is attached on an end portion of a robot arm or a manipulator; which enables the application to packing and assembling processes of electronics such as a cellular phone or TV; and which enables the improvement of flexibility for gripping and picking functions, is disclosed. A tool tip of the robot end effecter includes a body unit, which is formed of a flexible material; of which the cross sectional surface is formed into one among a circular type or point symmetry or rotation symmetry; and of which the inside is formed into a cavity, and a sensor unit which is mounted on the inner surface of the upper part of the body unit and which is formed of a plurality of optical fiber lattices.
Abstract:
PURPOSE: A method and a device to calculate a gripping force of grippers are provided to improve work efficiency by rapidly calculating a gripping force range of the gripper even if a new object is changed. CONSTITUTION: A method to calculate a gripping force of grippers comprises the steps of: estimating Young modulus of objects using geometric information of the object obtained from vision images and a deformation amount of the object measured in a state where the gripper grips the objects with a predetermined initial gripping force (S110); estimating a density of the object using first and second vertical movement forces (S120); estimating a slip frictional coefficient at a moment when the object starts to separate from the gripper while the gripping force is reduced in a state where the object is gripped with the initial gripping force (S130); and calculating a gripping force range of the gripper using the Young modulus, the density, and the slip frictional coefficient (S140). The first and second vertical movement forces are required to vertically move the gripper in half of a height of the object from a gripping point of the object. [Reference numerals] (AA) Start; (BB) End; (S110) Step of estimating Young modulus of objects using geometric information of the object obtained from vision images and a deformation amount of the object measured in a state where the gripper grips the objects with a predetermined initial gripping force; (S120) Step of estimating a density of the object using a first vertical movement force required to vertically move a gripper in a gripping point of the object and a second vertical movement force required to vertically move the gripper while the objects are gripped; (S130) Step of estimating a slip frictional coefficient at a moment when the object starts to separate from the gripper while the gripping force is reduced in a state where the object is gripped with the initial gripping force; (S140) Step of calculating a gripping force range of the gripper using the Young modulus, the density, and the slip frictional coefficient
Abstract:
본 발명에 따르는 촬상장치에 대한 촬상방향 조정장치는, 상기 촬상장치의 후면 중 렌즈 중심에 대응되는 지점과 일측 종단이 연결된 연결 바 장치; 상기 연결 바 장치에 대한 3차원 회전 운동과 직선 운동을 가이드하는 직선 운동 가이드가 형성된 볼 조인트 장치; 제1 내지 제3 직선 링크(AD,AB,CD 링크)와 하나의 삼각 링크(BPC 링크)로 구성되며, 상기 삼각 링크(BPC 링크)의 제1꼭지점(P)은 상기 연결 바 장치의 타측 종단과 볼 조인트를 통해 연결되고, 상기 제1직선 링크(AD 링크)는 일측 종단이 회전축(A)과 연결되고, 상기 제2직선 링크(AB 링크)는 상기 삼각 링크(BPC 링크)의 제2꼭지점(B)과 회전축(A)간에 연결되며, 상기 회전축(A)을 기준으로 회전하고, 상기 제3직선 링크(CD 링크)는 상기 삼각 링크(BPC 링크)의 제3꼭지점(C)과 상기 제1직선 링크(AD 링크)의 타측 종단(D) 사이에 연결하는 4 바 장치; 상기 4 바 장치의 회전축(A)을 통해 상기 제2직선 링크(AB 링크)에 대한 회전력을 제공하는 1차원 모터;를 구비하며, 상기 4 바 장치의 제2직선 링크(AB 링크)가 회전함에 따라 상기 삼각 링크(BPC 링크)의 제1꼭지점(P)이 2차원 궤적을 그리고, 상기 삼각 링크(BPC 링크)의 제1꼭지점(P)이 그리는 2차원 궤적에 따라 상기 촬상장치의 렌즈 중심이 움직임을 특징으로 한다. 특히, 상기 4 바 장치의 제2직선 링크(AB 링크)가 회전함에 따라 상기 삼각 링크(BPC 링크)의 제1꼭지점(P)이 8자 형상의 궤적을 그리고, 상기 촬상장치의 렌즈 중심도 상기 삼각 링크(BPC 링크)의 제1꼭지점(P)의 움직임에 따라 8자 형상의 궤적을 그림을 특징으로 한다. 촬상장치, 4 바 장치
Abstract:
PURPOSE: A parameter design method of a 3SL robot having magnetic stable area is provided to perform efficient energy operation in order to operate a magnetic stable area about a mobile robot. CONSTITUTION: A stiffness mechanism of 1SL and a stiffness mechanism of 2SL having a magnetic stable area are included in a parameter design method. A parameter corresponding to the stiffness mechanism of the 2SL is included at high speed. The parameter corresponding to the stiffness mechanism of the 2SL is included at low speed.
Abstract:
PURPOSE: A method for estimating the torque range of a hip joint of a hip joint-driven legged robot and a friction coefficient between robot feet and the ground is provided to calculate the friction coefficient of a legged robot regardless of the CONSTITUTION of robot feet. CONSTITUTION: A method for estimating the torque range of a hip joint of a hip joint-driven legged robot and a friction coefficient between robot feet and the ground is as follows. When the feet of a legged robot touches the ground, the height and knee angle of the robot are measured through a height sensor installed in a hip joint and an angle sensor installed in a knee joint. The leg length of the robot is calculated through information from the height sensor and the angle sensor. The sweep angle of the robot is calculated through the calculated leg length and the height of the hip joint. When the feet of the robot touching the ground slide on the ground, the torque of the hip joint is measured. A frictional coefficient is calculated through the measured hip joint torque.