Abstract:
A ferroelectric memory having a plurality of ferroelectric memory cells, each ferroelectric memory cell including a ferroelectric capacitor is disclosed. The ferroelectric memory includes read and write lines and a plurality of ferroelectric memory cell select buses, one select bus corresponding to each of the ferroelectric memory cells. Each of the ferroelectric memory cells includes first and second gates for connecting the ferroelectric memory cell to the read line and the write line, respectively, in response to signals on the ferroelectric memory cell select bus corresponding to that ferroelectric memory cell. A write circuit causes a charge to be stored in the ferroelectric capacitor of the ferroelectric memory cell currently connected to the write line, the charge having a value determined by a data value having at least three states. A read circuit measures the charge stored in the ferroelectric capacitor of the ferroelectric memory cell currently connected to the read line to generate an output value, the output value corresponding to one of the states.
Abstract:
A circuit having an autonomous ferroelectric memory latch (AML) is disclosed. An AML characterized by an AML input, an AML output, a first AML power contact, a second AML power contact and an AML state, and a first switch in series with one of the AML input or the AML output. The switch is positioned to prevent the state of the AML from changing when power is provided between the first and second AML power contacts. In one aspect of the invention, the circuit could include a second switch in series with the other of the AML input or the AML output and a latch in series with the AML input or the AML output. The latch is positioned such that a direct path back does not exist between the AML output and the AML input.
Abstract:
A circuit having an autonomous ferroelectric memory latch (AML) is disclosed. An AML characterized by an AML input, an AML output, a first AML power contact, a second AML power contact and an AML state, and a first switch in series with one of the AML input or the AML output. The switch is positioned to prevent the state of the AML from changing when power is provided between the first and second AML power contacts, In one aspect of the invention, the circuit could include a second switch in series with the other of the AML input or the AML output and a latch in series with the AML input or the AML output. The latch is positioned such that a direct path back does not exist between the AML output and the AML input.
Abstract:
A ferroelectric memory cell (200) for storing information. The information is stored in the remnant polarization of a ferroelectric dielectric layer (213) by setting the direction of the remnant polarization. The ferroelectric memory cell (200) is designed to store the information at a temperature less than a first temperature. The memory cell (200) includes top and bottom contacts that sandwich the dielectric layer (213) which includes a ferroelectric material having a Curie point greater than the first temperature and less than 400 degrees C. The dielectric layer (213) is encapsulated in an oxygen impermeable material such that the encapsulating layer (221) prevents oxygen from entering or leaving the dielectric layer (213). One of the contacts typically includes a platinum electrode (210). The other contact may include a similar electrode or a semiconductor layer having electrodes spaced apart thereon.
Abstract:
Dispositif de commutation photo-activé (10) dans lequel la réception d'un signal de lumière sert à commuter un faisceau de lumière entre deux points de sortie (14) et (16). Le faisceau de lumière d'entrée est réfléchi par une interface située entre deux régions d'indices de réfraction différents, lorsque le signal de lumière est présent. Ensuite, le faisceau de lumière réfléchi sort par le premier point de sortie (16). En l'absence du signal de lumière, les deux régions ont le même indice de réfraction, et le faisceau de lumière passe par les deux régions et il sort par le second point de sortie (14).
Abstract:
A method of determining a location of a mobile communication terminal, the method including: receiving base station identification signals from a plurality of base stations; calculating distance ratios between the plurality of base stations and the mobile communication terminal, from the received base station identification signals; generating first variables and second variables from the distance ratios; and determining the location of the mobile communication terminal from the first variables and the second variables is provided.
Abstract:
An improved ferroelectric FET structure (10) in which the ferroelectric layer (14) is doped to reduce retention loss. A ferroelectric FET according to the present invention includes a semiconductor layer (16) having first and second contacts (18, 19) thereon, the first and second contacts being separated from one another. The ferroelectric FET also includes a bottom electrode (12) and a ferroelectric layer (14) which is sandwiched between the semiconductor layer (16) and the bottom electrode (12). The ferroelectric layer (14) is constructed from a perovskite structure of the chemical composition ABO3 wherein the B site comprises first and second elements and a dopant element that has an oxidation state greater than +4 in sufficient concentration to impede shifts in the resistance measured between the first and second contacts with time. The ferroelectric FET structure preferably comprises Pb in the A-site. The first and second elements are preferably Zr and Ti, respectively. The preferred B-site dopants are Niobium, Tantalum, and Tungsten at concentration between 1 % and 8 %.
Abstract:
A method for making an improved LSCO stack in the generation of small platinum features (46) on the surface of a substrate (32) by sputtering of the LSCO material (54) and utilizing a photoresist mask to pattern the LSCO (54) in accordance with the platinum features (46). The problems and expense associated with high-temperature deposition of LSCO on platinum and the etching thereof are overcome by sputtering the LSCO at room temperature.
Abstract:
An improved ferroelectric FET structure (10) in which the ferroelectric layer (14) is doped to reduce retention loss. A ferroelectric FET according to the present invention includes a semiconductor layer (16) having first and second contacts (18, 19) thereon, the first and second contacts being separated from one another. The ferroelectric FET also includes a bottom electrode (12) and a ferroelectric layer (14) which is sandwiched between the semiconductor layer (16) and the bottom electrode (12). The ferroelectric layer (14) is constructed from a perovskite structure of the chemical composition ABO3 wherein the B site comprises first and second elements and a dopant element that has an oxidation state greater than +4 in sufficient concentration to impede shifts in the resistance measured between the first and second contacts with time. The ferroelectric FET structure preferably comprises Pb in the A-site. The first and second elements are preferably Zr and Ti, respectively. The preferred B-site dopants are Niobium, Tantalum, and Tungsten at concentration between 1 % and 8 %.
Abstract:
A method for making an improved LSCO stack in the generation of small platinum features (46) on the surface of a substrate (32) by sputtering of the LSCO material (54) and utilizing a photoresist mask to pattern the LSCO (54) in accordance with the platinum features (46). The problems and expense associated with high-temperature deposition of LSCO on platinum and the etching thereof are overcome by sputtering the LSCO at room temperature.