Abstract:
A white and color photoexcitation light emitting sheet and a manufacturing method thereof are provided to obtain a white and color surface light source by controlling a composition ratio and a kind of light emitting material according to a light source having an ultraviolet wavelength or a blue wavelength. A white and color photoexcitation light emitting sheet includes a substrate(10), a light source, and a white and color photoexcitation light emitting layer(20). The light source is formed on the substrate. The light source is a lamp or a light emitting device including an organic light emitting device and an inorganic light emitting device. The organic light emitting device and the inorganic light emitting device emit a light of an ultraviolet wavelength or a blue wavelength. The white and color photoexcitation light emitting layer converts a light emitted in the light source into a light of a different wavelength. The white and color photoexcitation light emitting layer is made of mixture of white and color photoexcitation light emitting material, base polymer, and solvent.
Abstract:
A dye-sensitized solar cell with a metal oxide layer including a metal oxide nano particle by electro-spinning using a mask and a manufacturing method thereof are provided to improve optical conversion efficiency by obtaining high dye-absorption capability and high electron transport characteristic. A metal oxide layer(13) including the metal oxide nano particle is formed on a substrate. The dye is absorbed in the metal oxide nano particle. The electrolyte is injected between a semiconductor electrode(10) and a counter electrode(20). A super fine composite fiber is formed by spraying precursor of the metal oxide and polymer on the substrate. The metal oxide layer including the metal oxide nano particle is formed by removing the polymer from the super fine composite fiber by heat processing the super fine composite fiber after thermo-compression. The porosity of the metal oxide layer is 65 to 90 %.
Abstract:
An electrode for a super-capacitor having metal oxide deposited onto ultra-fine carbon fiber and a fabrication method thereof are provided to maintain high specific capacity of the metal oxide during a high speed charging/discharging process. An electrode for a super-capacitor having metal oxide deposited onto ultra-fine carbon fiber includes a current collector, a carbon substrate, and a metal oxide thin film. The carbon substrate is formed on the current collector and is composed of carbon fiber having a specific surface area of at least 200m^2/g(BET) and d002 of less than 0.36 nm. The metal oxide thin film is formed on the carbon substrate.
Abstract:
A separator having a heat resistant ultrafine fibrous layer is provided to impart excellent cycle characteristics, high energy density and high capacity to a secondary battery. A separator comprises a fibrous layer coated on either surface or both surfaces of a porous film, wherein the fibrous layer comprises a fiber phase formed by electrospinning a heat resistant polymer material having a melting point of 180 deg.C or higher or having no melting point. The heat resistant polymer is at least one selected from aromatic polyesters, polyphosphazenes, polyurethane copolymers, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate.
Abstract:
A heat resistant ultrafine fibrous separator is provided to realize low heat shrinkage and excellent heat resistance, ion conductivity and adhesion to an electrode, and to impart excellent cycle characteristics, high energy density and high capacity to a lithium ion battery. A heat resistant ultrafine fibrous separator comprises a heat resistant polymer material having a melting point of 180 deg.C or higher or having no melting point, wherein the heat resistant polymer exists in the state of fibers by electrospinning. The heat resistant polymer is at least one selected from aromatic polyesters, polyphosphazenes, polyurethane copolymers, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate.
Abstract:
본 발명은 리튬이차전지 및 그 제조방법을 제공한다. 보다 구체적으로는, 본 발명은 초극세 섬유상의 다공성 고분자 전해질을 포함하는 리튬이차전지 및 그 제조방법을 제공하는 것으로서, 상기 고분자 전해질은 a) 하나 이상의 고분자를 가소제 및 리튬염이 용해된 유기 전해액에 용해시켜 하나 이상의 고분자 전해질 용액을 얻고, b) 얻어진 고분자 용액을 전하유도 방사장치의 배럴에 투입한 후, c) 상기 고분자 전해질 용액을 기판 상에 노즐로 전하유도 방사하여 다공성 고분자 전해질 필름을 얻는 방법으로 제조된다. 본 발명의 리튬이차전지는 전극과의 접합성, 기계적 강도, 저온 및 고온특성 그리고 리튬이차전지용 유기 전해액과의 호환성이 우수하다는 장점을 갖는다.
Abstract:
본 발명은 신규한 복합 고분자 전해질, 이를 포함하는 리튬이차전지 및 이들의 제조방법을 제공한다. 보다 구체적으로는, 본 발명은 1 - 3000 nm의 직경을 갖는 입자로 이루어진 초극세 섬유상 다공성 고분자 전해질 매트릭스와, 그 내부에 함입되는 고분자 및 리튬염이 용해된 유기전해액을 포함하는 복합 고분자 전해질을 제공한다. 본 발명의 복합 고분자 전해질은 전극과의 접합성, 기계적 강도, 저온 및 고온특성, 및 리튬이차전지용 유기 전해액과의 호환성이 우수하다는 장점을 가지며, 리튬이차전지의 제조에 응용될 수 있다.
Abstract:
PURPOSE: A manufacturing method of a cellulose solution having excellent processability is characterized by dissolving cellulose powder in a liquid NMMO solvent. The manufacturing method thereof is capable of preventing formation of a film or particle gel on a cellulose surface. CONSTITUTION: The manufacturing method of the cellulose solution is as follows: (a) preparing fibril type cellulose powder; (b) supplying a liquid tertiary amine oxide solvent into a twin screw extruder; (c) supplying the cellulose powder into the twin screw extruder, followed by mixing the cellulose powder and the liquid tertiary amine oxide solvent uniformly to prepare paste; (d) dissolving the cellulose powder in the tertiary amine oxide solvent on a melting area of the twin screw extruder; (e) removing bubbles and impurities of the solution; and then (f) stabilizing the solution to produce the homogeneous cellulose solution.
Abstract:
PURPOSE: Provided are a lithium secondary battery which comprises a super fine fibrous porous polymer separator film and has the advantages of better adhesion with electrodes, good mechanical strength, better performance at low and high temperatures, better compatibility with organic electrolyte solution of a lithium secondary battery, and its fabrication method. CONSTITUTION: The lithium secondary battery comprises a cathode active material, an anode active material, a porous polymer separator film and an organic electrolyte solution dissolving a lithium salt, wherein the porous polymer separator film is constructed with super fine fibrous polymer having a diameter of 1-3000nm and is fabricated by the steps of: (a) melting at least one polymer or dissolving at least one polymer with organic solvents to obtain at least one polymeric melt or at least one polymeric solution; (b) adding the obtained polymeric melt or polymeric solution to barrels of an electrospinning machine; and (c) discharging the polymeric melt or polymeric solution onto a substrate using a nozzle to form a porous separator film.
Abstract:
본 발명은 고분자를 일렉트로스피닝 (electrospinning)하여 압력의 큰 손실 없이 나노미터 크기의 입자를 제거할 수 있도록 제조한 고분자막, 및 이를 열적 탄화시켜 화학적 안정성이 높고 투과 및 흡착력이 우수하도록 제조한 탄소막에 관한 것이다.