Microfluidic systems including three-dimensionally arrayed channel networks

    公开(公告)号:AU6496001A

    公开(公告)日:2001-12-03

    申请号:AU6496001

    申请日:2001-05-25

    Abstract: The present invention provides, in certain embodiments, improved microfluidic systems and methods for fabricating improved microfluidic systems, which contain one or more levels of microfluidic channels. The inventive methods can provide a convenient route to topologically complex and improved microfluidic systems. The microfluidic systems provided according to the invention can include three-dimensionally arrayed networks of fluid flow paths therein including channels that cross over or under other channels of the network without physical intersection at the points of cross over. The microfluidic networks of the invention can be fabricated via replica molding processes, also provided by the invention, utilizing mold masters including surfaces having topological features formed by photolithography. The microfluidic networks of the invention are, in some cases, comprised of a single replica molded layer, and, in other cases, are comprised of two, three, or more replica molded layers that have been assembled to form the overall microfluidic network structure. The present invention also describes various novel applications for using the microfluidic network structures provided by the invention.

    Patterning of surfaces utilizing microfluidic stamps including three-dimensionally arrayed channel networks

    公开(公告)号:AU6348101A

    公开(公告)日:2001-12-03

    申请号:AU6348101

    申请日:2001-05-25

    Abstract: The present invention describes improved microfluidic systems and procedures for fabricating improved microfluidic systems, which contain one or more levels of microfluidic channels. The methods for fabrication the systems disclosed can provide a convenient route to topologically complex and improved microfluidic systems. The microfluidic systems can include three-dimensionally arrayed networks of fluid flow paths therein including channels that cross over or under other channels of the network without physical intersection at the points of cross over. The microfluidic networks can be fabricated via replica molding processes utilizing mold masters including surfaces having topological features formed by photolithography. The present invention also involves microfluidic systems and methods for fabricating complex patterns of materials, such as biological materials and cells, on surfaces utilizing the microfluidic systems. Specifically, the invention provides microfluidic surface patterning systems and methods for fabricating complex, discontinuous patterns on surfaces that can incorporate or deposit multiple materials onto the surfaces. The present invention also provides improved microfluidic stamps or applicators for microcontact surface patterning, which are able to pattern onto a surface arbitrary two-dimensional patterns, and which are able to pattern multiple substances onto a surface without the need for multiple steps of registration or stamping during patterning and without the need to selectively "ink" different regions of the stamp with different materials.

    Cell patterning technique
    99.
    发明专利

    公开(公告)号:AU4365601A

    公开(公告)日:2001-10-03

    申请号:AU4365601

    申请日:2001-03-15

    Abstract: The present invention provides a masking system for selectively applying cells to predetermined regions of a surface. A mask is positioned adjacent to a surface to cover some portions of the surface while allowing other portions of the surface to remain uncovered. Cells then are applied to uncovered portions of the surface and the mask removed. Alternatively, a cell-adhesion promoter is applied to uncovered portions of the surface, and then cells are applied to the surface before or after removal of the mask from the surface. The masking system can be pre-coated, at least on those surfaces which will come into contact with cells, with a cell-adhesion inhibitor to resist absorption of cells and thereby avoid cell damage when the mask is removed (if cells are deposited prior to removal of the mask). A polymeric elastomeric mask that comes into cohesive-conformal contact with a surface to be patterned can be used.

Patent Agency Ranking