Abstract:
An aerial vehicle having a low radar signature includes a first side on which turbine openings, and payload bays or landing gear bays are disposed. A second side of the aerial vehicle is designed to have a smaller radar signature than the first side.
Abstract:
A fragmentation warhead is provided, capable of being mounted in a carrier vehicle, the warhead having a longitudinal axis. In at least one example the warhead includes a shell that extends along the longitudinal axis. The shell includes a fixed shell portion and a fragmentation portion, and defines therebetween a cavity for accommodating therein an explosive charge. The fragmentation portion includes at least one set of serially adjacent fragments in correspondingly serially contiguous relationship in the fragmentation portion and in generally helical relationship with respect to the longitudinal axis. A corresponding carrier vehicle and a corresponding missile are also provided.
Abstract:
The disclosed embodiments include a trailer for an autonomous vehicle controlled by a command and control interface. The trailer includes a trailer body configured to retain the autonomous vehicle in an undeployed configuration. The trailer also anchors the autonomous vehicle in a deployed configuration. A tether is provided having a first end coupled to the trailer body and a second end that is configured to couple to the autonomous vehicle. A winch is utilized to adjust a length of the tether to move the autonomous vehicle between the undeployed configuration and deployed configuration. Further, a communication system communicates with the command and control interface and the autonomous vehicle to control movement of the autonomous vehicle between the undeployed configuration and deployed configuration.
Abstract:
A system comprising an aerial vehicle or an unmanned aerial vehicle (UAV) configured to control pitch, roll, and/or yaw via airfoils having resiliently mounted trailing edges opposed by fuselage-house deflecting actuator horns. Embodiments include one or more rudder elements which may be rotatably attached and actuated by an effector member disposed within the fuselage housing and extendible in part to engage the one or more rudder elements.
Abstract:
A power safety system is configured to provide power information in an aircraft. The power safety system includes a power safety instrument having a power required indicator and a power available indicator, each being located on a display. A position of the power required indicator and the power available indicator represent the power available and power required to perform a hover flight maneuver. The power safety system may be operated in a flight planning mode or in a current flight mode. The power safety system uses at least one sensor to measure variables having an effect on the power required and the power available.
Abstract:
In some embodiments, an adapter for attaching a handheld firearm to an unmanned air vehicle comprises a mounting assembly configured for attachment to said firearm and to the unmanned air vehicle, and an actuation assembly comprising an actuation device configured to actuate a trigger of the handheld firearm.
Abstract:
A hovering surveillance device. An electronic imaging device is disposed on a housing having a primary lift element, at least one compressed lighter-than-air gas element, a pitch adjustment element, and, a steering element. The compressed lighter-than-air gas is channeled to the primary lift element and the pitch adjustment element to selectively vary the altitude and angle for the housing such that scene of interest may be imaged. The lighter-than-air gas may be selected from the group of helium, hydrogen, heated air, neon, ammonia, and methane.
Abstract:
In some embodiments, an adapter for attaching a handheld firearm to an unmanned air vehicle comprises a mounting assembly configured for attachment to said firearm and to the unmanned air vehicle, and an actuation assembly comprising an actuation device configured to actuate a trigger of the handheld firearm.
Abstract:
A lightweight, man-portable weapon delivery system includes a fuselage, and first and second wings mounted to opposing sides of the fuselage. The system includes an electric motor for driving a propeller for providing thrust to propel the system. The electric motor is mounted to the fuselage, and configured to be remotely started by a user. The system includes an imaging device mounted to the system and configured to capture images of a theater of operations of the system. The system includes a communication circuit in communication with the imaging device and configured to transmit the images from the imaging device to the user for viewing the theater of operations of the system for remotely steering the system. The communication circuit is configured to receive commands from the user for steering the system into the target. The system includes a payload configured to store the ordnance.
Abstract:
In some embodiments, an adapter for attaching a handheld firearm to an unmanned air vehicle comprises a mounting assembly configured for attachment to said firearm and to the unmanned air vehicle, and an actuation assembly comprising an actuation device configured to actuate a trigger of the handheld firearm.