Abstract:
The present invention relates to MEMS device that comprises a first electrode, and a second electrode suspended with a distance to the first electrode with the aid of a suspension structure. The MEMS device further comprises at least one deformation electrode. The second electrode or the suspension structure or both are plastically deformable upon application of an electrostatic deformation force via the deformation electrode. This way, variations in the off- state position of the second electrode that occur during fabrication of different devices or during operation of a single device can be eliminated.
Abstract:
Packaging systems and methods of manufacture are provided. In this regard, a representative system comprises a first layer of liquid crystal polymer (LCP), a first electronic component supported by the first layer, and a second layer of LCP. The first layer and the second layer encase the first elecctronic component.
Abstract:
The invention relates to a micromechanical device comprising a mobile beam (1), said beam being attached by the two ends (2) thereof to a rigid frame (3) provided with two arms (4) each having two ends (5). The ends (5) of an arm (4) are respectively fixed to the two ends (2) of the mobile beam (1). Each arm (4) has a central part (6) arranged between the two ends (5) of the corresponding arm (4). A rear face of the central part (6) of each arm (4) is attached to a base support (10). The frame (3) comprises at least one stressed element (11) for adjusting the stressed state of the beam. The stressed element (11) can be centred between the front face and the rear face of the corresponding arm (4). The frame (3) can comprise pairs of front and rear stressed elements (11) which are respectively arranged on the front face and the rear face of the arms (4) in such a way that they face each other.
Abstract:
A micro electromechanical device comprising a floating element extending between at least two anchors, the floating element comprising a predetermined reference portion, which in at least one predetermined state of the device in use is to be located within a predetermined reference plane, and at least two flexible sections which each extend between the reference portion and one of the anchors, at least two of the flexible sections comprising a stress relieving element which enables deflection of the floating element as a result of a stress gradient, characterised in that the stress relieving elements are provided on predetermined locations between the respective anchor and the reference portion, chosen such that the reference portion is substantially located within the predetermined reference plane in said predetermined state of the device in use.
Abstract:
Un microsystème électromécanique comprend une poutre (1) et une électrode (10) couplée par une interaction électrostatique avec la poutre. La poutre est adaptée pour subir des déformations élastiques par flexion et possède un motif de section sensiblement constant. La poutre (1) est constituée de plusieurs pans (P1-P4) s'étendant sur la longueur de la poutre (L), et ayant chacun une épaisseur inférieure à une dimension extérieure du motif de section (w, t). Une fréquence de vibration par flexion de la poutre est alors accrue par rapport à une poutre pleine de mêmes dimensions extérieures. Un tel microsystème est adapté pour des applications à durées de transition très courtes, ou pour réaliser des oscillateurs et des résonateurs à haute fréquence.
Abstract in simplified Chinese:提供一种用于制造一微切换组件之方法。切换组件包括一基材、固定至基材之两支撑构件、及桥接在支撑构件之间的一可移式梁。梁系包括一薄膜、皆配置于薄膜上之一可移式接触电极及一可移式驱动电极。切换组件亦包括面对可移式接触电极之一对静态接触电极、及与可移式驱动电极合作用以产生静电力之一静态驱动电极。此方法包括下列步骤:在基材上制造一牺牲层、及在牺牲层上制造薄膜、及以薄膜介入使牺牲层受到蚀刻,借以将支撑构件形成为基材与薄膜之间之牺牲层的剩余部分。
Abstract:
A MEMS switch contains an RF electrode 102, pull-down electrodes 104 and anchor electrodes 108 located on a substrate 101. A plurality of islands 226 are provided in the pull-down electrode and electrically isolated therefrom. On top of the RF electrode is the RF contact 206 to which the MEMS-bridge 212, 214 forms an ohmic contact in the pulled-down state. The pull-down electrodes 104 are covered with a dielectric layer 202 to avoid a short-circuit between the bridge and the pull-down electrode. Contact stoppers 224 are disposed on the dielectric layer 202 at locations corresponding to the islands 226, and the resulting gap between the bridge and the dielectric layer in the pulled-down state reduces dielectric charging. In alternative embodiments, the contact stoppers are provide within the dielectric layer 202 or disposed on the islands themselves and under the dielectric layer. The switch provides good controllability of the contact resistance of MEMS switches over a wide voltage operating range.
Abstract:
An electrical circuit comprising at least two negative capacitance insulators connected in series, one of the two negative capacitance insulators is biased to generate a negative capacitance. One of the negative capacitance insulators may include an air-gap which is part of a nanoelectromechnical system (NEMS) device and the second negative capacitance insulator includes a ferroelectric material. Both of the negative capacitance insulators may be located between the channel and gate of a field effect transistor. The NEMS device may include a movable electrode, a dielectric and a fixed electrode and arranged so that the movable electrode is attached to at least two points and spaced apart from the dielectric and fixed electrode, and the ferroelectric capacitor is electrically connected to either of the electrodes.
Abstract:
Embodiments of the present invention generally relate to a MEMS device that is anchored using the layer that is deposited to form the cavity sealing layer and/or with the layer that is deposited to form the pull-off electrode. The switching element of the MEMS device will have a flexible or movable portion and will also have a fixed or anchor portion that is electrically coupled to ground. The layer that is used to seal the cavity in which the switching element is disposed can also be coupled to the fixed or anchor portion of the switching element to anchor the fixed or anchor portion within the cavity. Additionally, the layer that is used to form one of the electrodes may be used to provide additional leverage for anchoring the fixed or anchor portion within the cavity. In either situation, the movement of the flexible or movable portion is not hindered.
Abstract:
A MEMs actuator device and method of forming includes arrays of actuator elements. Each actuator element has a moveable top plate and a bottom plate. The top plate includes a central membrane member and a cantilever spring for movement of the central membrane member. The bottom plate consists of two RF signal lines extending under the central membrane member. A MEMs electrostatic actuator device includes a CMOS wafer, a MEMs wafer, and a ball bond assembly. Interconnections are made from a ball bond to an associated through-silicon-via (TSV) that extends through the MEMS wafer. A RF signal path includes a ball bond electrically connected through a TSV and to a horizontal feed bar and from the first horizontal feed bar vertically into each column of the array. A metal bond ring extends between the CMOS wafer and the MEMS wafer. An RF grounding loop is completed from a ground shield overlying the array to the metal bond ring, a TSV and to a ball bond.