Abstract:
Embodiments disclosed herein generally include using a large number of small MEMS devices to replace the function of an individual larger MEMS device or digital variable capacitor. The large number of smaller MEMS devices perform the same function as the larger device, but because of the smaller size, they can be encapsulated in a cavity using complementary metal oxide semiconductor (CMOS) compatible processes. Signal averaging over a large number of the smaller devices allows the accuracy of the array of smaller devices to be equivalent to the larger device. The process is exemplified by considering the use of a MEMS based accelerometer switch array with an integrated analog to digital conversion of the inertial response. The process is also exemplified by considering the use of a MEMS based device structure where the MEMS devices operate in parallel as a digital variable capacitor.
Abstract:
Eine Anordnung von Kohlenstoff-Nanoröhren für einen Sensor oder einen Aktuator umfasst: mehrere schichtartig angeordnete Stapel hoher Dichte (110), zumindest einen schichtartig angeordneten Stapel geringer Dichte (120) und zumindest zwei elektrische Kontaktelemente (130). Die Stapel hoher Dichte (110) und die Stapel geringer Dichte (120) weisen jeweils eine Vielzahl von Kohlenstoff-Nanoröhren auf und der zumindest eine Stapel geringer Dichte (120) steht beidseitig in Kontakt zu jeweils einem der Stapel hoher Dichte (110), um diese in einem variierbaren Abstand (A) voneinander zu halten. Die zumindest zwei elektrischen Kontaktelemente (130) kontaktieren verschiedene Stapel hoher Dichte (110) elektrisch, um eine Änderung des variierbaren Abstandes (A) als ein elektrisches Sensorsignal zu erfassen, oder um den variierbaren Abstand (A) durch ein Anlegen einer elektrischen Spannung zwischen den zumindest zwei elektrischen Kontaktelementen (130) zu ändern.
Abstract:
The present invention generally relates to an RF MEMS DVC and a method for manufacture thereof. To ensure that undesired grain growth does not occur and contribute to an uneven RF electrode, a multilayer stack comprising an AlCu layer and a layer containing titanium may be used. The titanium diffuses into the AlCu layer at higher temperatures such that the grain growth of the AlCu will be inhibited and the switching element can be fabricated with a consistent structure, which leads to a consistent, predictable capacitance during operation.
Abstract:
This disclosure provides systems and methods for forming a metal thin film shield over a thin film cap to protect electromechanical systems devices in a cavity beneath. In one aspect, a dual or multi layer thin film structure is used to seal a electromechanical device. For example, a metal thin film shield can be mated over an oxide thin film cap to encapsulate the electromechanical device and prevent degradation due to wafer thinning, dicing and package assembly induced stresses, thereby strengthening the survivability of the electromechanical device in the encapsulated cavity. During redistribution layer processing, a metal thin film shield, such as a copper layer, is formed over the wafer surface, patterned and metalized.
Abstract:
Embodiments disclosed herein generally include using a large number of small MEMS devices to replace the function of an individual larger MEMS device or digital variable capacitor. The large number of smaller MEMS devices perform the same function as the larger device, but because of the smaller size, they can be encapsulated in a cavity using complementary metal oxide semiconductor (CMOS) compatible processes. Signal averaging over a large number of the smaller devices allows the accuracy of the array of smaller devices to be equivalent to the larger device. The process is exemplified by considering the use of a MEMS based accelerometer switch array with an integrated analog to digital conversion of the inertial response. The process is also exemplified by considering the use of a MEMS based device structure where the MEMS devices operate in parallel as a digital variable capacitor.
Abstract:
Provided is a method of manufacturing an electromechanical transducer having a reduced variation in a breakdown strength caused by a variation in flatness of an insulating layer. In the method of manufacturing the electromechanical transducer, a first insulating layer (2) is formed on a first substrate (1), a barrier wall (3) is formed by removing a part of the first insulating layer, and a second insulating layer (10) is formed on a region of the first substrate after the part of the first insulating layer has been removed. Next, a gap is formed by bonding a second substrate (18) on the barrier wall, and a vibration film (23) that is opposed to the second insulating layer via the gap is formed from the second substrate. In the forming of the barrier wall, a height on a gap side in a direction vertical to the first substrate becomes lower than a height of a center portion.
Abstract:
A semiconductor device includes a substrate, a first dielectric layer located above the substrate, a moving-gate transducer, and a proof mass. The moving-gate transducer is at least partially formed within the substrate and is at least partially formed within the first dielectric layer. The proof mass includes a portion of the first dielectric layer and a portion of a silicon layer. The silicon layer is located above the first dielectric layer.