Abstract:
The invention relates to a flat coil and to a lthographic method for producing microcomponents with metal component sources in the sub-millimeter range. According to the inventive method, a resist material is structured by means of selective exposition and removing the unexposed zones and filling in the gaps between the resist structures with metal by means of a galvanic method to produe the metal component structures. The aim of the invention is to improve such a method so that the microcomponents can be subdivided during said process. To this end, a structured three-dimensional sacrificial metal layer is produced during the production of the microcomponent, said sacrificial layer delimiting the microcomponent and being removed once the microcomponent is due to be subdivided. The invention also relates to a method for producing microcomponents with component structures of cross-linkable resist material and to a flat coil for micromotors with at least one coil layer with strip conductors in the sub-millimeter range.
Abstract:
A microscale device provides for a nanoscale machining. A tool, similar to probes used in atomic force microscopy is attached to a micro-load gear and is powered by a micromotor. This very small tool allows a variety of nanostructures to be fabricated on a variety of substrates.
Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
Abstract:
A microelectromechanical device is provided that includes a mobile rotor and a fixed stator in a device plane. Moreover, a fixed wall defines a wall plane that is adjacent to the device plane and a motion limiter is provided to prevent the rotor from coming into direct physical contact with the fixed wall. The motion limiter includes a shock absorber that extends from the rotor to the stator and a fixed stopper structure that protrudes from the fixed wall toward the shock absorber.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.
Abstract:
An energy collecting device is disclosed. For example, the energy collecting device comprises a plate layer having a plurality of perforations for receiving a plurality of molecules, a molecular energy collecting layer, coupled to the plate layer, having an impacting structure for receiving the plurality of molecules, and a substrate layer, coupled to the molecular energy collecting layer, having a conductor wire coil for collecting electrons that are generated when the plurality of molecules impacts the impacting structure.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.
Abstract:
A device for converting the kinetic energy of molecules into useful work includes an actuator configured to move within a fluid or gas due to collisions with the molecules of the fluid or gas. The actuator has dimensions that subject it to the Brownian motion of the surrounding molecules. The actuator utilizes objects having multiple surfaces where the different surfaces result in differing coefficients of restitution. The Brownian motion of surrounding molecules produce molecular impacts with the surfaces. Each surface then experiences relative differences in transferred energy from the kinetic collisions. The sum effect of the collisions produces net velocity in a desired direction. The controlled motion can be utilized in a variety of manners to perform work, such as generating electricity or transporting materials.
Abstract:
In one embodiment, a rotary device includes a multiwall nanotube that extends substantially perpendicularly from a substrate. A rotor may be coupled to an outer wall of the multiwall nanotube, be spaced apart from the substrate, and be free to rotate around an elongate axis of the multiwall nanotube.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.