Abstract:
According to one embodiment, a method for creating a metal nanowire mesh the method includes forming a first layer of block copolymer, causing the block copolymer to become aligned in approximately straight lines, infiltrating one phase of the block copolymer with a metal, and removing the block copolymer where the metal remains after the block copolymer is removed. Furthermore, the method includes forming a second layer of block copolymer, causing the block copolymer in the second layer to become ordered in approximately straight lines oriented at an angle from greater than 0 degrees to 90 degrees from a mean direction of longitudinal axes of the remaining metal, infiltrating one phase of the block copolymer in the second layer with a second metal, and removing the block copolymer in the second layer where the second metal remains above the metal after the block copolymer in the second layer is removed.
Abstract:
The transfer of devices or device components from a carrier substrate to a further carrier substrate or to a plurality of further carrier substrates can be performed with little effort (few transfer steps) to the at least one further carrier substrate. The method comprises producing first devices on the first carrier substrate in a two-dimensional grid. It comprises defining positions on the second carrier substrate on the basis of the two-dimensional grid for at least some of the first devices. It comprises releasing a plurality of the first devices from the first carrier substrate while maintaining the two-dimensional grid. Finally, the plurality of first devices are applied to the second carrier substrate in the defined positions while maintaining the two-dimensional grid or a multiple thereof in at least one of the two directions.
Abstract:
An electromechanical device includes a stack formed of an insulating layer interposed between two solid layers, and a micromechanical structure of predetermined thickness suspended above a recess of predetermined depth, the recess and the micromechanical structure forming one of the two solid layers of the stack, and the insulating layer forming the bottom of the recess.
Abstract:
A method for forming a plurality of electrostatic actuator membranes for an electrostatically actuated ink jet printhead. The method can include forming a blanket actuator membrane layer on an etch stop layer, where the etch stop layer is interposed between the blanket membrane layer and a handle layer such as a semiconductor wafer. The blanket actuator membrane layer is patterned to form a plurality of actuator membranes. The plurality of actuator membranes is attached to a printhead drive assembly that includes circuitry for actuating the plurality of actuator membranes. Subsequently, the handle layer and etch stop layer are removed, thereby leaving the plurality of actuator membranes attached to the printhead drive assembly.
Abstract:
A method for forming a plurality of electrostatic actuator membranes for an electrostatically actuated ink jet printhead. The method can include forming a blanket actuator membrane layer on an etch stop layer, where the etch stop layer is interposed between the blanket membrane layer and a handle layer such as a semiconductor wafer. The blanket actuator membrane layer is patterned to form a plurality of actuator membranes. The plurality of actuator membranes is attached to a printhead drive assembly that includes circuitry for actuating the plurality of actuator membranes. Subsequently, the handle layer and etch stop layer are removed, thereby leaving the plurality of actuator membranes attached to the printhead drive assembly.
Abstract:
Various methods for attaching a crystalline write pole onto an amorphous substrate and the resulting structures are described in detail herein. Further, the resulting structure may have a magnetic moment exceeding 2.4 Tesla. Still further, methods for depositing an epitaxial crystalline write pole on a crystalline seed or template material to ensure that the phase of the write pole is consistent with the high moment phase of the template material are also described in detail herein.
Abstract:
The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias. Applications of the disclosed embodiments include tunable lasers, microphones, microspeakers, remotely-activated contact-less pressure sensors and the like.
Abstract:
The present invention provides a transfer substrate for transferring a metal wiring material to a transfer-receiving object, the transfer substrate comprising a substrate, at least one metal wiring material formed on the substrate and an underlying metal film formed between the substrate and the metal wiring material, wherein the metal wiring material is a molded article prepared by sintering, e.g., gold powder having a purity of 99.9% by weight or more and an average particle size of 0.01 μm to 1.0 μm and the underlying metal film is composed of a metal such as gold or an alloy. The transfer substrate is capable of transferring a metal wiring material to the transfer-receiving object even at a temperature for heating the transfer-receiving object of 80 to 300° C.
Abstract:
A semiconductor wafer is formed with a first device layer having active devices. A handle wafer having a trap rich layer is bonded to a top surface of the semiconductor wafer. A second device layer having a MEMS device or acoustic filter device is formed on a bottom surface of the semiconductor wafer. The second device layer is formed either by monolithic fabrication processes or layer-transfer processes.
Abstract:
An embodiment is a method for bonding. The method comprises bonding a handle substrate to a capping substrate; thinning the capping substrate; etching the capping substrate; and after the thinning and the etching the capping substrate, bonding the capping substrate to an active substrate. The handle substrate has an opening therethrough. The method also comprises removing the handle substrate from the capping substrate. The removing comprises providing an etchant through the opening to separate the handle substrate from the capping substrate. Other embodiments further include forming a bonding material on a surface of at least one of the handle substrate and the capping substrate such that the capping substrate is bonded to the handle substrate by the bonding material. The bonding material may be removed by using a dry etching to remove the handle substrate from the capping substrate.