Abstract:
An object of the invention is to provide a thin-film cathode having a base electrode, an upper electrode and an electron accelerator disposed therebetween and made of an insulator or a semiconductor, wherein a diode current rises with a lower threshold voltage that that in the background art, so that a diode current required for electron emission can be secured with a low voltage, and to obtain an image display device long in life and low in power consumption. Platinum-group metal (Group VIII), noble metal belonging to Group Ib, or a laminated film, a mixed film or an alloy film of those materials containing an alkali metal oxide, an alkaline earth metal compound or a compound of transition metal belonging to Group III to VII from the interface with an electron accelerator to the surface is used as an upper electrode.
Abstract:
For inhibiting generation of pixels that could not be displayed in a line in a display screen of an electron emission display comprising the pixels each provided with an electron source in which a first electrode at a signal line side and a second electrode at a scanning line side are joined through an isolating layer (electron acceleration layer), the present invention cuts off continuity between the first electrode and the second electrode which are short-circuited caused by a defect, so that the electron source with the defect is isolated from other electron sources. In the electron source with a defect, for example, a portion of the second electrode surrounding the above-mentioned defect thereof is excised by laser.
Abstract:
An emitter has an electron supply and a porous cathode layer having nanohole openings. The emitter also has a tunneling layer disposed between the electron supply and the cathode layer.
Abstract:
A display having hot electron type electron sources displaying an image by a line sequential scanning scheme is provided to prevent poor brightness uniformity along scan lines. The hot electron type electron source is provided with a top electrode bus line serving as a scan line and a bottom electrode bus line serving as a data line. The top electrode bus line has a sheet resistance lower than that of the bottom electrode. The wire sheet resistance of the scam line can be reduced to several m/square. When forming a 40 inch large screen FED using the hot electron type electron sources, a voltage drop amount produced in the scan line can be suppressed below an allowable range. As a result, high quality image without poor brightness uniformity can be obtained.
Abstract:
An electron emitter includes an emitter element made of a dielectric material, and an upper electrode and a lower electrode. A drive voltage is applied between the upper electrode and the lower electrode for emitting electrons from the emitter element. The upper electrode is formed on an upper surface of the emitter element, and the lower electrode is formed on a lower surface of the emitter element. The emitter element is exposed through a plurality of through regions of the upper electrode. Peripheral surfaces around the through regions facing the emitter element are spaced from the emitter element.
Abstract:
There is provided a field emission electron source at a low cost in which electrons can be emitted with a high stability and a high efficiency and a method of producing the same. In the field emission electron source, a strong electric field drift part 106 is formed on the n-type silicon substrate on the principal surface thereof and a surface electrode 107 made of a gold thin film is formed on the strong electric field drift part 106. And the ohmic electrode 2 is formed on the back surface of the n-type silicon substrate 101. In this field emission electron source 110, when the surface electrode 107 is disposed in the vacuum and a DC voltage is applied to the surface electrode 107 which is of a positive polarity with respect to the n-type silicon substrate 101 (ohmic electrode 2), electrons injected from the n-type silicon substrate 101 are drifted in the strong electric field drift part 106 and emitted through the surface electrode 107. The strong electric field drift part 106 comprises a drift region 161 which has a cross section in the structure of mesh at right angles to the direction of thickness of the n-type silicon substrate 1, which is an electrically conductive substrate, and a heat radiation region 162 which is filled in the voids of the mesh and has a heat conduction higher than that of the drift region 161.
Abstract:
A lower electrode (2) and surface electrode (7) composed of a layer-structured conductive carbide layer is formed on one principal surface side of the substrate (1) composed of an insulative substrate such as a glass or ceramic substrate. A non-doped polycrystalline silicon layer (3) is formed on the lower electrode (2), An electron transit layer (6) composed of an oxidized porous polycrystalline silicon is formed on the polycrystalline silicon layer (3). The electron transit layer (6) is composed of a composite nanocrystal layer including polycrystalline silicon and many nanocrystalline silicons residing adjacent to a grain boundary of the polycrystalline silicon. When voltage is applied between the lower electrode (2) and the surface electrode (7) such that the surface electrode (7) has a higher potential, electrons are injected from the lower electrode (2) toward the surface electrode (7), and emitted through the surface electrode (7) through the electron transit layer (6).
Abstract:
An electron discharge element includes: a lower electrode (2) near to a substrate and an upper electrode (7) far from the substrate; insulation layers (5, 6) layered between the lower electrode (2) and the upper electrode (7) and an electron supply layer (4). The electron discharge element discharges electrons from the upper electrode (7) when voltage is applied across the lower electrode (2) and the upper electrode (7). The electron discharge element further includes an electron discharge unit (14) having an opening formed by a stepwise inner wall of the insulation layers (5, 6) whose film thickness is stepwise reduced; and a carbon region (8) connected to the upper electrode (7), arranged in contact with the insulation layers (5, 6) and the electron supply layer (4), and containing carbon. Thus, it is possible to create an element having the same electron discharge characteristic as an electron discharge element in which the insulation layer film thickness is gradually reduced, without using minute particles or a micro-mask.