Abstract:
A carrier sheet for printed circuits and semiconductor chips having enhanced adhesion of conductive metal layers to a fluororesin surface resulting from rendering the fluororesin surface hydrophilic by a hydrophilic macromolecule before plating the metal onto the surface.
Abstract:
Copper through-hole printed wiring boards are produced by forming an etching resist layer on the copper plating of a double sided copper clad laminate. The etching resist layer is formed after a negative resist pattern is applied to both sides of the laminate, and then dipped in a solution containing at least one salt of 2-alkylbenzimidazoles, 2-alkylalkyl-benzimidazoles, 2-phenyl-benzimidazoles and 2-phenyl-alkylbenzimidazoles. After the negative resist pattern is selectively removed with an alkaline aqueous solution, in accordane with the predetermined pattern of the wiring, the exposed copper plating is etched off with an alkali etchant.
Abstract:
Method for pressing a material (6,8,84) into a through-hole (12) or blind-hole (80) in a substrate (10,82). The material (6,8,84) is disposed on the surface of the substrate (10,82). An environment is provided permitting the material (6,8,84) to flow for example by heating the material (6,8,84) to the glass transition temperature or above. Thereafter pressure is applied causing the material (6,8,84) to flow, first coating the sidewall (18,92) of the hole (12,80) and on the continued application of pressure the material flows to completely fill the hole (12,80). The resulting substrate (10,82) can have a substantially planar surface having holes (12,80) with the periphery coated with or completely filled with the material (6,8,84). The material (6,8,84) is preferably a thermoplastic polymeric material such as a polyimide and a perfluorinated polymer.
Abstract:
The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addressed by backfilling the permeable cracks (33) with a flexible material (35). Uniform gaps between the metal (32) and dielectric materials (31) can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
Abstract:
On a mis au point un appareil, un procédé et un matériau polymérisable permettant de préparer des tracés électroconducteurs sur une plaquette de circuits (627) (fig. 11) utilisant une technologie auxiliaire. On peut isoler individuellement chaque tracé (637, fig. 12a, typique), lesdits tracés étant directement inscrits dans un processus sériel. Ledit appareil comprend un élément d'extrusion (35 et 37), (fig. 1) permettant d'extruder un premier matériau polymérisable, ainsi qu'un support. Le support (21 et 23) est destiné à maintenir ledit élément d'extrusion et la plaquette de circuits (41) à proximité relative, et à produire un mouvement relatif entre l'élément d'extrusion et la plaquette de circuits. Selon le procédé d'invention, le premier matériau polymérisable est extrudé sur un support de substrat de circuits (631), (fig. 12c) le long de chemins présélectionnés afin de former des tracés (637, 639, 641 et 643), puis ledit premier matériau polymérisable est polymérisé, ce matériau étant conducteur après polymérisation. On a mis au point plusieurs modes de réalisation de systèmes d'extrusion ainsi que plusieurs systèmes pour laminer et percer des plaquettes afin de produire plusieurs élaborations de plaquettes de circuits.
Abstract:
The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addressed by backfilling the permeable cracks (33) with a flexible material (35). Uniform gaps between the metal (32) and dielectric materials (31) can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
Abstract:
A multilayer wiring substrate wherein a substrate of ceramic material (11) contains a plurality of power supply wiring layers (1) and is formed with first and second through-holes (20,20a). Each of the first through-holes (20) contains a first metal layer (32,33) which is connected to at least one of the power supply wiring layers (12,13). Each of the second through-holes (20a) has a wall surface coated with a layer of a fluoride resin dielectric (21) with a second metal layer (22) formed on the coating. A circuit is supplied with power via the first metal layers and with signals via the second metal layers. The circuit comprises thin film wiring layers (25) formed on the substrate, insulating layers (24) made of an organic material, and electronic circuit elements (not shown). The substrate is made by coating upper and lower surfaces and through-holes of a substrate with a layer of the fluid resin dielectric, removing the coating from the upper and lower surfaces, forming a metal layer in the upper and lower surfaces and on the coating and removing the metal layer except for portions at each end of and within the through-holes.
Abstract:
A process for the preparation of a circuit-printed board having a plated through-hole comprising the steps of: processing a board (3) having an electroconductive metal layer (2) on both surfaces to form a through-hole (4); plating at least wall (4a) of the through-hole (4) with an electroconductive metal (5); forming a resist layer (6) in the form of a reverse pattern for a desired circuit pattern over both surfaces of the board (3) except at least on the wall of the plated through-hole (4); depositing electrically an ionic resinous paint (9) over the plated wall (4a) of the through-hole (4) and an area of the surface of the board (3) where the resist layer (6) is not provided to form a deposited resinous paint layer thereon; removing the resist layer (6) to expose the electroconductive layer (5) (2) of the board (3) at the portion under the resist layer; removing the exposed portion of the electroconductive layer (5) (2) by etching; and removing the deposited resinous paint layer (9). The improvement comprises use of a photo-sensitive dry film for the formation of the reverse pattern. Another improvement comprises use of a specific aqueous solution for the removal of the resinous paint layer.
Abstract:
Schaltungsträgerplatten aus isolierendem Substrat werden zum Aufbau von elektrischen Leitungsanordnungen verwendet und sind auf einer oder beiden Plattenseiten (11, 12) mit einer elektrisch leitfähigen Schicht (13, 14) versehen und weisen eine Mehrzahl durch die Schaltungsträgerplatte (10) hindurchgehende Bohrungen (15) auf. Die Wandungen (16) der Bohrungen sind durch eine elektrisch leitfähige Schicht (17) abgedeckt, die die Schichten (13, 14) elektrisch leitend verbinden. Eine derartige Platte wird in dieser Form in einem festen Verteilungsmuster der Bohrungen (15) hergestellt und anschliessend mit einem Resistmaterial ein-oder beidseitig bedeckt. In einem vom Anwender vorzunehmenden Verfahrensschritt kann dann entsprechend dem Muster des Resistmaterials (18) das Leiterbahnenmuster auf das Resistmaterial (18) übertragen werden, wobei anschliessend in einem Ätzverfahren die übrige elektrisch leitfähige Schicht (13, 14) weggeätzt wird.
Abstract:
Disclosed is a process for producing a copper through-hole printed circuit board, which comprises forming a required pattern on a copper-clad laminated plate using a resist ink soluble in an alkaline aqueous solution, immersing the copper-clad laminated plate in an aqueous solution of a salt or an alkylimidazole compound represented by the following general formula wherein R 2 represents an alkyl group having 5 to 21 carbon atoms, R 4 represents a hydrogen atom or a methyl group, and HA represents an organic or inorganic acid, to form on the copper surface of the copper-clad laminated plate an etching resist film composed of the alkylimidazole compound, drying the resulting copper-clad laminated plate, and then treating it with an alkaline etching solution.