Abstract:
Ein für Einbauzwecke bestimmtes Spektralfotometer umfasst einen Messkopf mit einer mindestens eine Lichtquelle (11) aufweisenden Beleuchtungsanordnung (10) zur Beleuchtung eines in einer Messebene (M) befindlichen Messobjekts unter einem Einfallswinkel von im wesentlichen 45°, mit einer Aufpickanordnung (20) zum Auffangen des vom Messobjekt remittierten Messlichts unter einem Ausfallswinkel von im wesentlichen 0° relativ zum Lot auf die Messebene, mit einer einen Eintrittsspalt (31) aufweisenden Spektrometeranordnung (30) zur spektralen Aufspaltung des aufgefangenen und ihr durch den Eintrittsspalt zugeführten Messlichts und mit einer vom spektral aufgespaltenen Messlicht beaufschlagten fotoelektrischen Empfängeranordnung (32) zur Umwandlung der einzelnen Spektralanteile des Messlichts in entsprechende elektrische Signale. Ferner umfasst es eine elektronische Schaltung (100), welche die Lichtquelle (11) steuert und aus den von der fotoelektrischen Empfängeranordnung erzeugten elektrischen Signalen digitale Messwerte erzeugt. Die Lichtquelle (11) ist als flacher Cosinus-Strahler ausgebildet und so angeordnet, dass ihre Hauptstrahlungsrichtung im wesentlichen parallel zum Hauptstrahl (21) des remittierten Messlichts verläuft und der Mittenabstand der Lichtquelle vom Hauptstrahl des remittierten Messlichts im wesentlichen gleich gross ist wie der Abstand der Lichtquelle (11) von der Messebene (M). Die Lichtquelle (11) umfasst eine Kombination von zwei oder mehreren in einer Ebene und vorzugsweise auf einem gemeinsamen Träger angeordneten Leuchtdioden unterschiedlicher spektraler Charakteristiken, wobei die Ebene im wesentlichen parallel zur Messebene (M) ausgerichtet ist. Die Spektrometeranordnung (30) weist ein topfförmiges Spektrometergehäuse (34) aus Kunststoff mit einem im wesentlichen zylindrischen Mantel (34a) und einem abnehmbaren Deckel (34b) auf. Im Spektrometergehäuse ist ein konkaves Beugungsgitter (35) koaxial zum Mantel angeordnet und liegt auf einer am Mantel ausgebildeten und vorzugsweise komplementär zum Beugungsgitter geformten Ringschulter (34c) auf. Der Deckel (34b) presst das Beugungsgitter (35) über eine Druckfeder (36) mit definierter Kraft gegen die Ringschulter (34c). Das Spektrometergehäuse (34) ist mit seiner dem Deckel (34b) gegenüberliegenden Seite auf einer den Eintrittsspalt (31) und die fotoelektrische Empfängeranordnung (32) enthaltenden Printplatte (33) positioniert und durch eine Spannfeder (37) an der Printplatte fixiert. Die Aufpickanordnung (20) ist direkt an der dem Spektrometergehäuse (34) gegenüberliegenden Seite der Printplatte (33) montiert.
Abstract:
The present invention provides a device and method for analyzing the characteristics of a biopolymer with excellent mechanical stability, high spatial resolution and sensitivity using a simple device construction. Specifically, the Raman scattered light of a biopolymer is measured and the properties of monomer units forming the biopolymer are analyzed by using a biopolymer property analysis chip (100a) characterized by comprising: a solid substrate (110); at least one nanopore (120) disposed in the solid substrate (110); and one or more electrically conductive thin films (130a, 1 30b) disposed on the solid substrate (110). The biopolymer property analysis chip (100a) is characterized in that the electrically conductive thin films (130a,130b) are disposed partially on the solid substrate (110) where the nanopore (120) is formed and a biopolymer which has penetrated into the nanopore (120) is caused to generate Raman scattered light by means of irradiation with external light.
Abstract:
A detachable diffuse reflectance spectroscopy sample spinner (2) for use with a spectrometer (1) in diffuse reflectance spectroscopy. The sample spinner (2) comprises a sample receiving turntable (23) mounted for rotation and a motor unit (5) comprising a motor for rotatingly driving the turntable (23). The spinner (2) can comprise wireless electrical power receiver means (54) for receiving electrical power wirelessly for powering the motor (5).
Abstract:
A portable colour measurement device 10 is described. The device 10 has a body 20 including a light source 30 and a sensor40. The body 20 includes a measurement zone 21 to accommodate, within the body 20, an element 100 to be measured for colour. The light source 30 is configured to emit light along a path within the body 20 to the sensor 40. The measurement zone 21 is substantially in the path. The portable colour measurement device is configured to measure properties of an accommodated element 100 in dependence on one or more outputs of the sensor 40.
Abstract:
The invention relates to a process of measuring the visual properties including at least the color of an object (6), using a mobile device (1) having a built-in digital camera having a lens, a data processing unit, and user-installed software for processing electronic images, wherein the process comprises the steps of a) capturing an electronic image of the object with the digital camera, b) processing the electronic image by the software to compute at least color parameters, c) outputting at least the color parameters on an electronic display, wherein the electronic display is the display of the mobile device or a remote display in data connection with the mobile device,
wherein a set-up tool (5) having i) an interior surface defining an interior space, ii) a lens opening and iii) an object opening, and providing controlled lighting conditions to the part of the substrate of which an electronic image is captured, and wherein the lens opening of the tool is attached to the lens of the digital camera, and the object opening of the tool is attached to the part of the object of which an electronic image is captured, without obstructing the optical path between the lens and the part of the object of which an electronic image is captured.
Abstract:
An apparatus (1) for acquiring multispectral images of one side of a printed sheet (3) comprising a supporting surface (2) adapted to allow the placement of a sheet (3) whose printed image is to be acquired, a suction cylinder (6) adapted to make it possible to aspirate and lay without contact the sheet (3) that is made to pass thereon, grip means (4) adapted to make it possible to capture and immobilize one end of the sheet (3) without making contact with the image to be acquired, and a multispectral image acquisition system (5) arranged above the cylinder (6).
Abstract:
Sample receiving apparatus (301) for use in, and a method of, retaining a liquid sample (305) to be analysed within a light path between a light source and a light detector. A sample receiving body (302) defines a sample duct (303) and a port (304) for allowing passage of a liquid sample (305) into the sample duct (303). The sample duct is configured to receive a liquid sample (305) between a light source input position (306) and a light detector input position (307), the distance between the light source input position and the light detector input position defining a sample path length (L). The sample receiving apparatus (301) is configured such that the distance between the light source input position (306) and the light detector input position (307) is adjustable so as to adjust the length of the sample path length (L). Sample receiving apparatus (301) for use in spectrophotometer. Sample receiving apparatus for use with low volume samples (305).
Abstract:
A reference-color measurement step of obtaining a reference-color measurement value by measuring a spectroscopic-radiation luminance of a light being emitted from a reference-color portion in a measurement direction, or a tristimulus value thereof, using a light-source-color measuring instrument 5, without irradiating the reference-color portion with a light source for measurement, in a predetermined measurement environment; an objective-portion measurement step of obtaining an objective-portion measurement value by measuring a spectroscopic-radiation luminance of a light being emitted from a measurement-objective portion in the measurement direction, or a tristimulus value thereof, using the light-source-color measuring instrument 5, without irradiating the measurement-objective portion with a light source for measurement, in the measurement environment; and a color identification step of finding a color of the measurement-objective portion by means of computation from a ratio of the objective-portion measurement value with respect to the reference-color measurement value are equipped. Even when measuring a color of such a body, like a body including a fluorescent material, whose reflectivity has changed depending on the type of light source, it is possible to measure the color of such a body accurately.