DIODE LASER HAVING REDUCED BEAM DIVERGENCE

    公开(公告)号:US20210305772A1

    公开(公告)日:2021-09-30

    申请号:US17218926

    申请日:2021-03-31

    Abstract: The present disclosure relates to a diode laser having reduced beam divergence. Some implementations reduce a beam divergence in the far field by means of a deliberate modulation of the real refractive index of the diode laser. An area of the diode laser (e.g., the injection zone), may be structured with different materials having different refractive indices. In some implementations, the modulation of the refractive index makes it possible to excite a supermode, the field of which has the same phase (in-phase mode) under the contacts. Light, which propagates under the areas of a lower refractive index, obtains a phase shift of π after passing through the index-guiding trenches. Consequently, the in-phase mode is supported and the formation of the out-of-phase mode is prevented. Consequently, the laser field can, in this way, be stabilized even at high powers such that only a central beam lobe remains in the far field.

    1,2,4-TRIAZOLE DERIVATIVES AS TANKYRASE INHIBITORS

    公开(公告)号:US20210269419A1

    公开(公告)日:2021-09-02

    申请号:US17253668

    申请日:2019-06-19

    Abstract: The present invention relates to compounds of formula (I), tautomers, stereoisomers, pharmaceutically acceptable salts and pro-drugs thereof, to processes for their preparation, to pharmaceutical compositions containing such compounds and to their use in therapy wherein a dashed line indicates an optional bond; X represents: a 5- or 6-membered, unsaturated heterocyclic group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), C1-6 alkoxy (e.g. C1-3 alkoxy), —CN, —NO2, —N(R)2, and —SO2R (where each R is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl); a C3-5 cycloalkyl group optionally substituted by one or more (e.g. 1 or 2) substituents independently selected from C1-6 alkyl (preferably C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); or an aryl group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); Y represents: an aryl or heteroaryl group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); a 5- or 6-membered, saturated heterocyclic group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from C1-6 alkyl (preferably C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); or a C3-6 cycloalkyl group optionally substituted by one or more (e.g. 1 or 2) substituents independently selected from C1-6 alkyl (preferably C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), and C1-6 alkoxy (e.g. C1-3 alkoxy); and Z represents: an aryl group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), C1-6 alkoxy (e.g. C1-3 alkoxy), —CN, —NO2, —N(R)2, and —SO2R (where each R is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl); or an unsaturated, 5- to 10-membered mono- or bicyclic heterocyclic group optionally substituted by one or more (e.g. 1, 2 or 3) substituents independently selected from halogen (i.e. F, Cl, Br, I), C1-6 alkyl (e.g. C1-3 alkyl), C1-6 haloalkyl (e.g. C1-3 haloalkyl), C1-6 alkoxy (e.g. C1-3 alkoxy), —CN, —NO2, —N(R)2, and —SO2R (where each R is independently H or C1-6 alkyl, e.g. H or C1-3 alkyl). These compounds find particular use in the treatment and/or prevention of a disease or disorder responsive to inhibition of tankyrase 1 and/or 2, for example a disorder which is mediated by tankyrase 1 and/or 2 such as cancer.

    GATE STRUCTURE AND METHOD FOR PRODUCING SAME

    公开(公告)号:US20210013392A1

    公开(公告)日:2021-01-14

    申请号:US16764802

    申请日:2018-10-17

    Abstract: The present invention relates to a gate structure and a method for its production.
    In particular, the present invention relates to a gate structuring of a field effect transistor (FET), wherein the field effect transistor with the same active layer can be constructed as a depletion type, or D-type, as an enhancement type, or E-type, and as a low noise type, or LN-type, on a shared substrate base using a uniform method.
    The gate structure according to the invention comprises a substrate; a piezoelectric active layer (112, 212) disposed on the substrate (110, 210); a passivation layer (120, 220) disposed on the active layer (112, 212), wherein the passivation layer (120, 220) has a recess (122, 222) that extends through the entire passivation layer (120, 220) in the direction of the active layer (112, 212); a contact element (140, 240) disposed within the recess (122, 222), wherein the contact element (140, 240) extends from the active layer (112, 212) to above the passivation layer (120, 220); and a cover layer (150, 250) that covers the contact element (140, 240) above the passivation layer (120, 220); wherein at least one layer disposed above the active layer is tensile stressed or compressively stressed in the area around the contact element, with a normal tension of |σ|>200 MPa, wherein via the individual stresses in the area around the contact element, a resulting force on the boundary area between the passivation layer and the active layer is set, which influences via the piezoelectric effect the electron density in the active layer in the area below the contact element.

    Radiation detector and method for producing same

    公开(公告)号:US10825947B2

    公开(公告)日:2020-11-03

    申请号:US16312771

    申请日:2018-01-10

    Abstract: A radiation detector comprises an antenna structure; and a field effect transistor structure having a source region, a gate region, and a drain region, arranged on a substrate and forming mutually independent electrically conductive electrode structures through metallization, wherein the gate electrode structure completely encloses the source electrode structure or the drain electrode structure in a first plane; the enclosed electrode structure extends up to above the gate electrode structure and there overlaps the enclosure in a second plane above the first plane at least in sections in a planar manner; wherein an electrically insulating region for forming a capacitor with a metal-insulator-metal structure is arranged between the regions of the gate electrode structure overlapped by the enclosed electrode structure.

Patent Agency Ranking