Abstract:
A method for manufacturing a low interface state device includes performing a remote plasma surface process on a III-Nitride layer on a substrate; transferring the processed substrate to a deposition cavity via an oxygen-free transferring system; and depositing on the processed substrate in the deposition cavity. The deposition may be low pressure chemical vapor deposition (LPCVD). The interface state between a surface dielectric and III-Nitride material may be significantly decreased by integrating a low impairment remote plasma surface process and LPCVD.
Abstract:
A semiconductor device is provided that has a plurality of Fin structures extending on a substrate along a first direction; a gate stack structure extending on the substrate along a second direction and across the plurality of Fin structures, wherein the gate stack structure comprises a gate conductive layer and a gate insulating layer, and the gate conductive layer is formed by a doped poly-semiconductor; trench regions in the plurality of Fin structures and beneath the gate stack structure; and source/drain regions on the plurality of Fin structures and at both sides of the gate stack structure along the first direction. A method of manufacturing a semiconductor device is also provided.
Abstract:
In a method for manufacturing a semiconductor, a Through Silicon Via (TSV) template wafer and production wafers form a sandwich structure, in which the TSV template wafer has TSV structures uniformly distributed therein, for providing electrical connection between the production wafers to form 3D interconnection. The TSV template wafer is obtained by thinning a semiconductor wafer, which facilitates reducing the difficulty in etching and filling. Connection parts are provided on the TSV template wafer, for convenience of interconnection between the overlying and underlying production wafers, which facilitates reducing the difficulty in alignment and improving the convenience of design of electrical connection for 3D devices.
Abstract:
A planarization process, the process including performing first sputtering on a material layer, with an area of the material layer which has a relatively low loading condition for sputtering shielded by a first shielding layer, removing the first shielding layer, and performing second sputtering on the material layer to planarize the material layer.
Abstract:
A method for manufacturing a semiconductor device is provided. The method includes forming, on a substrate, a plurality of fins extending along a first direction; forming, on the fins, a dummy gate stack extending along a second direction; forming a gate spacer on opposite sides of the dummy gate stack in the first direction; epitaxially growing raised source/drain regions on the top of the fins on opposite sides of the gate spacer in the first direction; performing lightly-doping ion implantation through the raised source/drain regions with the gate spacer as a mask, to form source/drain extension regions in the fins on opposite sides of the gate spacer in the first direction; removing the dummy gate stack to form a gate trench; and forming a gate stack in the gate trench.
Abstract:
Provided is a MOSFET comprising: a substrate (100); a gate stack (500) on the substrate (100); source/drain regions (305) in the substrate on both sides of the gate stack (500); an interlayer dielectric layer (400) covering the source/drain regions; and source/drain extension regions (205) under edges on both sides of the gate stack (500); wherein insulators, which are not connected each other, are formed beneath the source/drain extension regions (205) under edges on both sides of the gate stack (500). By means of the MOSFET in the present disclosure, negative effects induced by DIBL on device performance can be effectively reduced.
Abstract:
A MOSFET and a method for manufacturing the same are disclosed. The method comprises: a. providing a substrate (100), a dummy gate structure (200), a epitaxial protection layer (101) and a sacrificial spacer (205); b. covering the dummy gate structure (200) and the substrate (100) on one side thereof by a mask layer, and forming a vacancy (102) in the substrate; c. growing a semiconductor layer (300) on the semiconductor structure to fill in the vacancy (102); d. removing the epitaxial protection layer (101) and the sacrificial spacer (205), and sequentially forming source/drain extension regions, a spacer (201), source/drain regions, and an interlayer dielectric layer (500); and e. removing the dummy gate structure (200) to form a dummy gate vacancy, and forming a gate stack in the dummy gate vacancy. In the MOSFET structure of the present disclosure, negative effects of DIBL on device performance can be effectively reduced.
Abstract:
There is provided a FinFET fabricating method, comprising: a. providing a substrate ; b. forming a fin on the substrate; c. forming a channel protective layer on the fin; d. forming a shallow trench isolation on both sides of the fin; e. forming a sacrificial gate stack and a spacer on the top surface and sidewalls of the channel region which is in the middle of the fin; f. forming source/drain regions in both ends of the fin; g. depositing an interlayer dielectric layer on the sacrificial gate stack and the source/drain regions, planarizing later to expose the sacrificial gate stack; h. removing the sacrificial gate stack stack to form a sacrificial gate vacancy and expose the channel region and the channel protective layer; i. covering a portion of the semiconductor structure in one end of the fin with a photoresist layer; j. removing a portion of the spacer not covered; k. removing the photoresist layer and filling a gate stack in the sacrificial gate vacancy; l. planarizing the semiconductor structure formed by the foregoing steps to expose the channel protective layer and forming a first separated gate stack and a second separated gate stack. Comparing with the prior art, control ability of independent-gate-voltage FinFET can be effectively improved and it is good for device performance.
Abstract:
A method for manufacturing an asymmetric super-thin SOIMOS transistor is disclosed. The method comprises: a. providing a substrate composed of an insulating layer (200) and a semiconductor layer (300); b. forming a gate stack (304) on the substrate; c. removing semiconductor materials of the semiconductor layer (300) on a source region side to form a first vacancy (001); d. removing insulating materials of the insulating layer (200) in the source region and under channel near the source region to form a second vacancy (002); e. filling semiconductor materials into the first vacancy (001) and the second vacancy (002) to connect with the semiconductor materials above the second vacancy (002); and f. performing source/drain implantation. Compared with the prior art, the method of the disclosure can suppress the short channel effects and enhance device performance.
Abstract:
The present disclosure provides a method of manufacturing a semiconductor device having silicon nitride with a tensile stress, the method comprising: c1) introducing and pre-stabilizing NH3 gas and N2 gas; c2) introducing silane; c3) igniting the gases by a radio-frequency source; c4) depositing SiN; and c5) processing the SiN by using a nitrogen ion implantation. According to the present disclosure, the nitrogen content in the SiN film can be enhanced by the nitrogen ion implantation and impinging, thereby increasing the density of the film. In this way, the acid resistance of the SiN with tensile stress is enhanced, so that the SiN with tensile stress may be integrated in a dual-strained liner of a gate-last process, so as to effectively improve the properties and reliability of the device.