CONFORMAL BORON DOPING METHOD FOR THREE-DIMENSIONAL STRUCTURE AND USE THEREOF

    公开(公告)号:US20250149339A1

    公开(公告)日:2025-05-08

    申请号:US18398558

    申请日:2023-12-28

    Abstract: A conformal boron doping method for a three-dimensional structure includes the steps of: removing a natural oxide layer on a surface of a silicon-based three-dimensional substrate; forming a buffer layer on the surface of the silicon-based three-dimensional substrate; forming a boron oxide thin film on the alumina buffer layer; covering a passivation layer on a surface of the boron oxide thin film; and driving boron impurities containing boron oxide into the silicon-based three-dimensional substrate through the buffer layer by using laser or rapid annealing, to dope the silicon-based three-dimensional substrate. Selecting suitable boron source precursors and oxidants solves the problems of difficult nucleation and inability to form a film after reaching a certain thickness for boron oxide. By selecting alumina as the passivation layer, it is possible to protect the boron oxide thin film from being damaged, and thus achieve damage-free diffusion doping during laser or rapid annealing processes.

    Voltage control of SOT-MRAM for deterministic writing

    公开(公告)号:US11930720B2

    公开(公告)日:2024-03-12

    申请号:US17495390

    申请日:2021-10-06

    Abstract: The present disclosure provides a storage unit, a data writing method and a data reading method thereof, a memory and an electronic device. The storage unit includes a semiconductor substrate, a first insulating medium layer, a ferroelectric thin film layer, a bottom electrode, a tunnel junction, a first metal interconnection portion, a second metal interconnection portion, a third metal interconnection portion and a fourth metal interconnection portion. The first insulating medium layer is formed on the semiconductor substrate, the ferroelectric thin film layer is disposed on the first insulating medium layer, the bottom electrode is formed on the ferroelectric thin film layer, and the tunnel junction is formed on the bottom electrode. The first metal interconnection portion is connected to a first end of the bottom electrode, and the third metal interconnection portion is connected to a second end of the bottom electrode. The second metal interconnection portion is connected to the ferroelectric thin film layer, and the fourth metal interconnection portion is connected to the tunnel junction. As compared with the prior art, the present disclosure can control a directional flipping of the magnetic moment in the tunnel junction based on the ferroelectric thin film layer provided. Based on the structural design of the storage unit, the present disclosure does not require an external magnetic field, and fully meets the requirement of high integration of the device.

    METHOD FOR MANUFACTURING GATE-ALL-AROUND TFET DEVICE

    公开(公告)号:US20250006822A1

    公开(公告)日:2025-01-02

    申请号:US18708028

    申请日:2023-11-27

    Abstract: A method for manufacturing a gate-all-around TFET device. The method comprises: forming, on a substrate, a channel stack comprising channel layer(s) and sacrificial layer(s) that alternate with each other; forming, on the substrate, a dummy gate astride the channel stack; forming a first spacer at a surface of the dummy gate; etching the sacrificial layer(s) to form recesses on side surfaces of the channel stack; forming second spacers in the recesses, respectively; fabricating a source and a drain separately, where a region for fabricating the source is shielded by a dielectric material when fabricating the drain, and a region for fabricating the drain is shielded by another dielectric material when fabricating the source; etching the dummy gate and the sacrificial layer(s) to form a space for a surrounding gate; and fabricating a surrounding dielectric-metal gate in the space.

Patent Agency Ranking