Abstract:
PURPOSE: A method for fabricating a nanoparticle thin film is provided to simplify a manufacturing process by arranging nanoparticles in a resin through the pressurizing the thin film. CONSTITUTION: A method for fabricating a nanoparticle thin film(160) comprises the steps of: depositing a nanoparticle mixed resin(130) on a substrate(140) in which a nano particle(111) and a polymer matrix are mixed; removing a solvent(112) from the nano particle mixing resin; and pressurizing and curing the nano particle mixing resin with a non-pattern lithographic plate(150).
Abstract:
PURPOSE: A gap filling method of a nanostructure and a manufacturing method of an organic light-emitting device(OLED) using thereof are provided to form an oxide thin film with a flat surface by pressing a gap of the nanostructure with a mold. CONSTITUTION: A gap filling method of a nanostructure comprises the following steps: supplying a substrate with the nanostructure including a gap on the upper side(S1); spreading a coating composition to fill the gap(S2); pressing the layer of the coating composition with a mold(S3); irradiation ultraviolet rays to the coating composition layer(S4); heating the layer to form a metal oxide thin film; and separating the mold from the metal oxide thin film(S5).
Abstract:
본 발명은 유기 태양 전지의 제조 방법에 관한 것으로서, 나노 패턴이 형성된 몰드 준비 단계와, 상기 몰드의 나노 패턴 상에 P형 유기반도체층을 도포하는 P형 유기반도체층 형성 단계와, 상기 P형 유기반도체층의 한면에 애노드 전극층을 형성하는 애노드 전극층 형성 단계와, 상기 몰드를 상기 P형 유기반도체층에서 분리하는 몰드 분리 단계와, 상기 P형 유기반도체층의 다른 면에 N형 유기반도체층을 도포하는 N형 유기반도체층 형성 단계, 및 상기 N형 유기반도체층의 한 면에 캐소드 전극층을 형성하는 캐소드 전극층 형성 단계를 포함한다. 이와 같이 본 발명에 따르면 몰드를 이용하여 고정도의 규칙적인 패턴을 갖는 유기 태양 전지를 용이하게 제작할 수 있다. 태양 전지, 몰드, 유기, 패턴
Abstract:
PURPOSE: A patterning method of a metal oxide thin film using nano-imprint and manufacturing method of a light emitting diode are provided to reduce a pattern process by removing a process of covering an ultraviolet resin additionally. CONSTITUTION: A photosensitivity metal-organic precursor solution is coated on a substrate(S1). A photosensitivity metal-organic precursor coating layer is pressurized into a patterned mold(S2). Ultraviolet ray is radiated on the pressured metal-organic precursor coating layer to form a hardened metal oxide film pattern(S3). The patterned mold is removed from the metal oxide thin film pattern(S4). A plastic process of processing the metal oxide thin film pattern with a thermal process is performed.
Abstract:
PURPOSE: An organic photovoltaic device and a manufacturing method thereof are provided to improve reliability of the device by preventing pattern breakdown of P3HT in a PCBM coating process. CONSTITUTION: A buffer layer(20) is formed on a first electrode(10). A photoactive layer(30) is formed to have a nano pattern on the buffer layer. A protective layer(40) is formed to protect the photoactive layer. An electron receiving layer(50) is formed on the protective layer. A second electrode(60) is formed on the electron receiving layer.
Abstract:
PURPOSE: A method for forming an electro-conductive polymer layer with a nano pattern is provided to form the pattern on a conductive polymer layer with a low solubility by forming the conductive polymer layer with a polymerization method instead of a spin coating method. CONSTITUTION: A mold with nano pattern is prepared(S101). A conductive polymer layer is formed on the nano pattern with a chemical oxidization polymerization method(S102). The mold is immersed into a bath in which a monomer solution is contained in order to form the conductive polymer layer on the nano pattern of the mold. A conductive polymer layer is attached on a substrate(S103). The mold is separated from the conductive polymer layer(S104). The conductive polymer layer is formed the mold in the water tub putting the monomer [monomer] solution as dipping on the nano pattern of the mold.
Abstract:
PURPOSE: A method for manufacturing a metal nano pattern is provided to improve productivity by manufacturing a metal nano pattern easily by applying dry or wet etching. CONSTITUTION: A nano pattern is formed on a substrate(S101). A metal layer is formed on a nano pattern(S102). A polarization polymer layer is formed on the metal layer(S103). The metal layer and the planarization layer are etched to expose the metal partially(S104). The pattern is etched to expose the upper surface of the nano pattern to the outside and make the metal layer remain on the groove of the nano pattern(S105).
Abstract:
PURPOSE: A transparent substrate and a manufacturing method thereof are provided to prevent the reflection of emitted light by forming a anti-reflection nano patterns at both sides of a main substrate. CONSTITUTION: A transparent substrate(200) comprises a main substrate(210) which is faced with a light source. The main substrate comprises the first surface facing the light source and the second surface facing the first surface. Nano-patterns(213,215) for preventing the reflection of light are arranged on the first and second surfaces and consist of a plurality of protrusions. The nano patterns have a pitch of 20 to 500nm. An ITO(Indium Tin Oxide) substrate(230) is attached to the first side of the substrate.
Abstract:
본 발명은 다중간섭현상을 이용한 미세패턴의 형성장치 및 방법에 관한 것이다. 본 발명의 장치는 레이저소스; 상기 레이저소스로부터의 출사광을 콜리메이팅된 상태의 평행광으로 입사하여 반사시키는 회절격자; 및 상기 회절격자로부터의 반사광을 상기 기판쪽으로 투과하고 나머지의 광은 상기 회절격자쪽으로 반사시키는 미러를 포함하며, 상기 회절격자와 미러에서 반사 및 투과를 반복하는 광은 매번 투과율(T)만큼의 광이 상기 미러를 투과하여 상기 포토레지스터에 조사되며 이 광들이 다중 간섭현상을 일으키며, 이때 다중 간섭신호의 주기를 변경하여 상기 기판 상에 노광된 노광부위의 위치를 변경시킴으로써 변경된 주기의 갯수 만큼의 패턴형성이 가능한 것을 특징으로 한다. 따라서, 본 발명은 다중 간섭현상을 이용하여 다양한 모양의 패턴의 형성이 가능하며 2회 이상의 패턴형성 시에 얼라인이 가능한 효과를 제공한다. 다중간섭, 패턴, 노광
Abstract:
A uniform pattern formation can be formed and the process for forming pattern step can be reduced by direct structuring of functional pattern including conductivity. A step is for depositing the adhesion protection layer(9) on the master board(12) having the master pattern(12a). A step is for preparing the substrate(13) for direct-structuring the master pattern of the master board by depositing the adhesion film(10) on the upper side. A step is for spraying the nano metal particle based ultraviolet ray(UV) curing resin(11) on the adhesion protection layer of the master board. A step is for evaporating the solvent of resin by heating the resin-coated master board with the hot plate. The step is for installing the substrate and master board within the ultraviolet curing apparatus and for adhering the nano metal particle based ultraviolet ray(UV) curing resin(15) on the substrate in order to be contacted with the upper side of the master board by irradiating the ultraviolet ray. A step is for separating the nano metal particle based ultraviolet ray(UV) curing resin(15) from the master board. A step is for forming the nano metal particle based ultraviolet ray(UV) curing resin pattern on the substrate by the etching process.