Abstract:
A device includes a base substrate (700) with a micro component (702) attached thereto. Suitably it is provided with routing elements (704) for conducting signals to and from the component (702). It also includes spacer members (706) which also can act as conducting structures for routing signals vertically. There is a capping structure (708) of a glass material, provided above the base substrate (700), bonded via the spacer members (706), preferably by eutectic bonding, wherein the capping structure (708) includes vias (710) including metal for providing electrical connection through the capping structure. The vias can be made by a stamping/pressing method entailing pressing needles under heating to soften the glass and applying pressure, to a predetermined depth in the glass. However, other methods are possible, e-g- drilling, etching, blasting.
Abstract:
A Micro-Electro-Mechanical System (MEMS). The MEMS includes a lower chamber with a wiring layer and an upper chamber which is connected to the lower chamber. A MEMS beam is suspended between the upper chamber and the lower chamber. A lid structure encloses the upper chamber, which is devoid of structures that interfere with a MEMS beam. The lid structure has a surface that is conformal to a sacrificial material vented from the upper chamber.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) cavity includes forming a first sacrificial cavity layer over a lower wiring layer. The method further includes forming a layer. The method further includes forming a second sacrificial cavity layer over the first sacrificial layer and in contact with the layer. The method further includes forming a lid on the second sacrificial cavity layer. The method further includes forming at least one vent hole in the lid, exposing a portion of the second sacrificial cavity layer. The method further includes venting or stripping the second sacrificial cavity layer such that a top surface of the second sacrificial cavity layer is no longer touching a bottom surface of the lid, before venting or stripping the first sacrificial cavity layer thereby forming a first cavity and second cavity, respectively.
Abstract:
A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience whilst also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer. The use of silicon carbide being beneficial within the formation of MEMS elements such as motors, gears, rotors, translation drives, etc where increased hardness reduces wear of such elements during operation.
Abstract:
A Micro-Electro-Mechanical System (MEMS). The MEMS includes a lower chamber with a wiring layer and an upper chamber which is connected to the lower chamber. A MEMS beam is suspended between the upper chamber and the lower chamber. A lid structure encloses the upper chamber, which is devoid of structures that interfere with a MEMS beam. The lid structure has a surface that is conformal to a sacrificial material vented from the upper chamber.
Abstract:
Planar cavity Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structure are provided. The method includes forming at least one Micro-Electro-Mechanical System (MEMS) cavity having a planar surface using a reverse damascene process.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is movable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience whilst also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer. The use of silicon carbide being beneficial within the formation of MEMS elements such as motors, gears, rotors, translation drives, etc where increased hardness reduces wear of such elements during operation.
Abstract:
평면의 캐비티(planar cavity) 미세전자기계시스템 (MEMS) 스트럭처들, 제조 방법들 및 디자인 스트럭처가 제공된다. 상기 방법은 리버스 다마신 공정을 사용하여 평면을 갖는 적어도 하나의 미세전자기계시스템 (MEMS) 캐비티 (60a, 60b)를 형성하는 단계를 포함한다.
Abstract:
A three-dimensional micro- electromechanical (MEM) varactor is described wherein a movable beam (50) and fixed electrodes (51) are respectively fabricated on separate substrates coupled to each other. The movable beam with comb-drive electrodes are fabricated on the "chip side" while the fixed bottom electrode is fabricated on a separated substrate "carrier side". Upon fabrication of the device on both surfaces of the substrate, the chip side device is diced and "flipped over", aligned and joined to the "carrier" substrate to form the final device. Comb-drive (fins) electrodes are used for actuation while the motion of the electrode provides changes in capacitance. Due to the constant driving forces involved, a large capacitance tuning range can be obtained. The three dimensional aspect of the device avails large surface area. When large aspect ratio features are provided, a lower actuation voltage can be used. Upon fabrication, the MEMS device is completely encapsulated, requiring no additional packaging of the device. Further, since alignment and bonding can be done on a wafer scale (wafer scale MEMS packaging), an improved device yield can be obtained at a lower cost.