Abstract:
A method produces a glass body that contains a reduced amount of OH groups in the metallic-oxide-containing glass layer and that has a reduced amount of transmission loss due to OH groups when the glass body is transformed into an optical fiber. The production method produces an optical glass body. An optical fiber contains the optical glass body in at least one part of its region for guiding a lightwave. The production method includes the following steps: (a) introducing into a glass pipe a gas containing an organometallic compound and a glass-forming material; (b) decomposing the organometallic compound into an organic constituent and a metallic constituent; (c) heating and oxidizing the metallic constituent so that produced glass particles containing a metallic oxide are deposited on the inner surface of the glass pipe to form a glass-particle-deposited layer; and (d) consolidating the deposited layer to form a metallic-oxide-containing glass layer.
Abstract:
The invention relates to a method for producing a blank mold from synthetic quartz glass by using a plasma-assisted deposition method, according to which a hydrogen-free media flow containing a glass starting material and a carrier gas is fed to a multi-nozzle deposition burner. The glass starting material is introduced into a plasma zone by the deposition burner and is oxidized therein while forming SiO2 particles, and the SiO2 particles are deposited on a deposition surface while being directly vitrified. In order to increase the deposition efficiency, the invention provides that the deposition burner (1) focuses the media flow toward the plasma zone (4) by. A multi-nozzle plasma burner, which is suited for carrying out the method and which is provided with a media nozzle for feeding a media flow to the plasma zone, is characterized in that the media nozzle (7) is designed so that it is focussed toward the plasma zone (4). The focussing is effected by a tapering (6) of the media nozzle (7).
Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
Abstract:
Disclosed is a method for fabricating an optical fiber preform using a double torch in MCVD, which includes a first process of heating a quartz tube (10) at a temperature lower than a sintering temperature by using a first torch (21) with putting reaction gas, oxygen gas and dehydration gas into the tube so that soot particles are generated and deposited, and heating the tube to a predetermined temperature by using a second torch (22) spaced apart from the first torch after the first torch (21) passes so that moisture in the soot particles is removed; and a second process of conducting dehydration for removing moisture in the soot particles by use of the first torch (21) again, and heating the tube above a sintering temperature by using the second torch (22) so that the soot particles free from moisture are vitrified.
Abstract:
A method for the production of a homogenous, shaped SiO2 body of near net shape wherein amorphous SiO2 particles comprising relatively large amorphous SiO2 particles and relatively small amorphous SiO2 particles are electrophoretically deposited from an aqueous dispersion on an electrically nonconductive membrane, the shape and geometry of which correspond to the shaped SiO2 body to be produced, wherein the membrane has an average pore size which is larger than the average particle size of the smaller amorphous SiO2 particles.
Abstract:
A method for manufacturing a glass base material for an optical fiber by forming a core rod having a core section and a portion of a clad, forming an additional clad by depositing glass particles on circumference of the core rod, and performing a sintering and vitrifying process on an obtained porous base material, includes the step of forming the core rod in order that the relation 3.75nulla/mnull6 is satisfied, where nullanull denotes an outer diameter of a section corresponding to the core rod, and nullmnull denotes a mode field diameter at 1385 nm in wavelength with regard to the optical fiber obtained by drawing the glass base material.
Abstract translation:一种制造光纤用玻璃基材的方法,其特征在于,通过形成具有芯部和包层的一部分的芯棒,通过在所述芯棒的周围沉积玻璃粒子而形成附加的包层,并进行烧结和玻璃化处理 在获得的多孔基材上,包括形成芯棒的步骤,以满足3.75 <= a / m <= 6的关系,其中“a”表示对应于芯棒的部分的外径,以及 “m”表示相对于通过拉制玻璃基材而获得的光纤的波长为1385nm的模场直径。
Abstract:
The present invention provides a long-life discharge lamp by removing the causes of lowering the service life of the discharge lamp owing to quartz glass constituting the discharge lamp and a gas sealed therein, and also provides a discharge lamp production method wherein the mixing of impurities affecting the service life of the discharge lamp is prevented. In the discharge lamp the content of hydrogen, oxygen and their compounds existing in the light-emitting portion is such that the maximum intensity of the light-emitting spectral intensities of the above impurities is {fraction (1/1000)} or less of the intensity of the main light-emitting spectrum of the noble gas when glow discharge occurs by supplying a current of 3 mA, and also the content of OH groups included in the quartz glass of the sealing portions is 5 ppm or less by weight.
Abstract:
A method for forming a fused silica glass includes delivering a silica precursor to a burner and passing the silica precursor through the flame of the burner to form silica particles, depositing the silica particles on a planar surface to form a flat, porous preform, dehydrating the porous preform, and consolidating the porous preform into a flat, dense glass.
Abstract:
It is characterized by having a pellicle sheet made of a synthetic quartz glass having an OH group concentration of at most 100 ppm and containing substantially no oxygen deficient defect. It is particularly preferred that the OH group concentration is at most 10 ppm, and the internal transmittance is at least 80%/cm at a wavelength of 157 nm.
Abstract translation:其特征在于,具有由OH基浓度为100ppm以下且基本上不含缺氧缺陷的合成石英玻璃制成的防护薄片。 特别优选OH基浓度为10ppm以下,内部透射率为157nm以上至少80%/ cm 3。