Abstract:
A power closing assembly operates a closure panel hingedly secured to a motor vehicle. The power closing assembly includes an actuator mounted to the motor vehicle, a movable striker also mounted to the motor vehicle to receive the closure panel's latch, and a rotary power cable connecting therebetween. The actuator has a closure cable on a spooling drum extending to the closure panel for closing from an open position when the actuator operates. The movable striker moves between a nominal inboard position and an outboard position. A rotary power cable connects between a provided output on the actuator and an input on the striker so that the striker's movement is powered and synchronized by the actuator. With the closure panel open, the actuator begins a closing cycle by driving in a direction to spool in the closure cable extending to the closure panel. The actuator's direction, using the rotary power cable, simultaneously causes the striker to move outboard. When the closure panel is pulled completely closed, the striker has also moved to its outboard position whereupon the closure panel's latch readily receives and engages the striker. Upon engagement, the actuator reverses its drive direction. This reverse direction causes both the actuator to reset with respect to its closure cable spooling drum and the rotary power cable to turn in the other direction causing the striker to return to its inboard position and fully close the closure panel against its seal load.
Abstract:
A drive assembly moves a vehicle closure panel from an open to a closed condition. The drive assembly has a housing and a motor mounted on the housing. A drum and gear assembly is rotatably mounted on the housing. The drum and gear assembly has a drum having a helical groove, a gear in driving engagement with the motor, and a spring biasing the drum in a winding direction relative to the gear. The drum and gear have a lost motion connection therebetween. A cable has an end connected to the closure panel and an opposite end connected to the drum about the helical groove in the winding direction. The drum rotates in the winding direction relative to the stationary gear as the closure panel is manually moved from the open to the closed condition with the spring maintaining a cable tension. The drum and gear rotate together in the winding direction upon energizing the motor effecting powered movement of the closure panel to the closed condition. The motor is afterwards energized in an opposite direction counter-rotating the gear relative to the drum back to a start position.
Abstract:
An operator for opening and closing movable barriers such as garage doors comprising a pass-point limit system which is a component of an operating head. An operator for a rolling shutter or gate can be installed on either side of the opening. A dual pass-point system provides a unique pass-point regardless of direction of mounting the operator, regardless of the direction of travel for opening the barrier, and regardless of installation configuration, eliminating the need for the installer to know which direction the motor is rotating or the barrier is travelling. The operator automatically learns both the open and close limits, regardless of direction of travel and without having to press a learn switch to set the open and close limits
Abstract:
An operator for opening and closing movable barriers such as garage doors comprising a pass-point limit system which is a component of an operating head. An operator for a rolling shutter or gate can be installed on either side of the opening. A dual pass-point system provides a unique pass-point regardless of direction of mounting the operator, regardless of the direction of travel for opening the barrier, and regardless of installation configuration, eliminating the need for the installer to know which direction the motor is rotating or the barrier is travelling. The operator automatically learns both the open and close limits, regardless of direction of travel and without having to press a learn switch to set the open and close limits.
Abstract:
A vehicle power liftgate cable drive has a cable drive housing. An electric motor with a motor housing and an output shaft is secured to the cable drive housing. A clutch pack with a first clutch driven by the output shaft and a second clutch driven by the first clutch, is mounted in the cable drive housing. One of the clutches in the clutch pack is a one way clutch and the other clutch is an electromagnetic clutch. A pinion gear is driven by the second clutch. An output gear is rotatably journaled on a fixed shaft and driven by the pinion gear. The cable drum is attached to the output gear. A coil spring has one end fixed to the fixed shaft and its other end attached to the cable drum. The fixed shaft is rotated to preload the coil spring in a direction that tends to wind a cable on the cable drum and then the fixed shaft is fastened to the cable drive housing. A cable is attached to the cable drum and to the liftgate. A solenoid plunger cooperates with the output gear to stop the liftgate in an intermediate position.
Abstract:
The invention relates to a cable-tensioning device associated with a rail (3) having at its ends (4, 5) two points for returning at least one cable (8), characterized in that one (4) of the said ends of the rail includes: a rotary cam (12); a cam-support element (7); a spring (13) coaxial with the cam (12) and having two angularly offset radial tabs (32, 33), a first tab (33) bearing on a stop (19) formed on the support element (7), and the second tab (32) extending inside the cam (12) and being designed to slide over a non-return means (20) arranged on the support element (7) after the cam has rotated through a first travel, this non-return means being shaped to prevent any return of the second tab (32) after the tabs of the spring (13) have become angularly separated by at least the length of the arc between the non-return means (20) and the stop (19), the cable (8) being engaged in grooves (30, 31) formed at the periphery of the cam. This invention has application to motor vehicle door window lifters.
Abstract:
A tension apparatus of a vehicle door powered sliding device comprises a motor fixed to a base plate, a wire drum mounted to the base plate by a first shaft and rotated by the motor, a wire cable provided between a vehicle sliding door and the wire drum for pulling the sliding door forward or rearward when the wire drum rotates, first and second tension arms rotatably mounted on the first shaft and having tension rollers which makes contact with the wire cable, an intermediate lever rotatably mounted on the first shaft, an adjusting member for fixing the first tension arm and the intermediate lever so that an angle of the first tension arm and the intermediate lever can be adjusted, a tension spring provided between the intermediate lever and the second tension arm.
Abstract:
A remotely controlled gate opener for use with a pivotable fence gate is characterized by a closed loop drive chain which is mounted around a set of three triangularly positioned fixed sprockets including a motorized drive sprocket and two positioning sprockets. The gate opener is mounted adjacent the gate post supporting the gate and the gate is attached to the drive chain at a point between the positioning sprockets such that the drive chain, when propelled by the motor, acts to pivot the gate. The preferred embodiment includes a radio controlled motor controller for remote control of the gate opener.