Abstract:
Apparatus, systems and methods for use in analyzing discrete reactions are provided. The analytical devices of the invention use an array of nanoscale regions (a chip) that has discrete patches of nanoscale regions. The chip mates with a collection device comprising an array of compact lens trains (CLTs) where each of the CLTs corresponds to a single patch of nanoscale regions. Each CLT collects the emitted light from a patch on the chip, collimates the light, performs color separation on the collimated emitted light, and focuses the separated light onto a portion of pixels on the detector below the CLT. Such systems are useful for monitoring many analytical reactions at one time including single molecule sequencing reactions.
Abstract:
It's disclosed a kit for detecting a micro-RNA of interest in at least one sample (C) extracted from a body fluid, comprising: at least one device (2) including a housing casing (2a) in which at least one housing seat (2b) is obtained for said at least one sample (C), and at least one opening (2c) through which said housing seat (2b) is accessible from the outside; at least one container means (3) for said at least one sample (C), said at least one container means (3) being insertable/disconnectable in/from said housing seat (2b) through said at least one opening (2c); at least one optical excitation group (5), housed in said housing casing (2a), designed to emit at least one excitation light radiation (λ, λ1 ) towards said at least one housing seat (2b); at least one detection group (6), designed to detect at least one emission light radiation (λ2), that can be generated, in use, by said at least one sample (C), said at least one sample (C) being optically excitable by said at least one excitation light radiation (λ, λ1) emitted by said at least one optical excitation group (5), said at least one detection group (6) being designed to supply at least one electric output signal (SO- signal output) correlated with the quantity, in said at least one sample (C), of said micro-RNA of interest; at least one processing unit (7) designed to receive and process said at least one electric signal (SO) and to output an index correlated with the quantity of said micro-RNA of interest in said at least one sample (C); said at least one container means (3) being made of a material permeable to said at least one excitation light radiation (λ, λ1) and to said at least one emission light radiation (A2); said at least one group (6) for detecting said emission light radiation (A2) comprises at least one sensor means (6a) of silicon photomultiplier type.
Abstract:
A handheld LIBS spectrometer includes an optics stage movably mounted to a housing and including a laser focusing lens and a detection lens. One or more motors advance and retract the optics stage, move the optics stage left and right, and/or move the optics stage up and down. A laser source in the housing is oriented to direct a laser beam to the laser focusing lens. A spectrometer subsystem in the housing is configured to receive electromagnetic radiation from the detection lens and to provide an output. A controller subsystem is responsive to the output of the spectrometer subsystem and is configured to control the laser source and motors. In this way, auto-calibration, auto-clean, and auto-focus, and/or moving spot functionality is possible.
Abstract:
Presently disclosed is a lighting system and methods of using the lighting system for in vitro potency assay for photofrin. The lighting system includes a lamp housing, a first lens, an infrared absorbing filter, an optical filter, and a second lens. The lamp housing includes a lamp and a light-port. In operation, broad spectrum light from the lamp exits the lamp housing by passing through the light-port. The first lens then collimates the broad spectrum light that exits the lamp housing through the light-port. The infrared absorbing filter then passes a first portion of the collimated broad spectrum light to the optical filter and absorbs infrared light of the broad spectrum light. The optical filter then passes a second portion of the collimated broad spectrum light to the second lens. The second lens then disperses the second portion of the collimated light to provide uniform irradiation of a cell culture plate. A method of using the lighting system for studying a photosensitizer is also disclosed.
Abstract:
The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.
Abstract:
Methods and systems for the quantitative and qualitative determination of one or more exogenous substances within a material are described. A flow of fluorescence-exciting/ablative energy (e.g., laser pulse(s), preferably in the ultraviolet region (e.g. 193-nm)), is directed onto the material to ablate a thin layer (e.g. ≈ 0.3-µm) of the material using photochemical decomposition. Simultaneously, the laser energy induces the fluorescence of the substance(s) of interest within the ablated layer of the material. The fluorescence emitted by the substance(s) of interest is then received by a device (e.g., a spectrometer), which measures the spectrum (i.e. intensity versus wavelength) of the received fluorescence. The fluorescence spectra are then transmitted to a spectral processing device (e.g., a microprocessor or computer) which is programmed or otherwise adapted to determine, on the basis of the fluoroscence spectra, whether the substance(s) of interest is/are present in the material and/or the concentration at which the substance(s) of interest is/are present in the material. This process may be repeated for each layer of the material to determine the concentration gradient of the substance(s) of interest in the material.
Abstract:
A test device (100), test system, and control method of the test device (100), which defines a light irradiating area in a reactor (20) to prevent a decrease in magnitude of a detected signal that may result due to scattering of light that has penetrated other area of the reactor (20) than an area (25) containing an object for detection and improve a dynamic range. A test device (100) may include a light source (130) configured to irradiate light; a reactor (20) configured to include at least one first area (25) to contain an object for detection; and a photo detector (150) configured to receive light that has been irradiated from the light source (130) and has passed the reactor (20) that contains the object for detection, wherein the light source (130) is configured to limitedly irradiate the light to the first area (25) of the reactor (20).
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Analyse von alkoholischen Getränken mittels eines Raman-Spektrometers (10) zur Detektion eines Raman-Spektrums einer zu untersuchenden Probe (20) mit mindestens einer optischen Einrichtung zur Erzeugung eines Laserstrahls, mindestens einem motorisierten Filter unterschiedlicher optischer Dichte zur Einstellung der Laserintensität auf der Probe und mindestens einer Linse für Licht im sichtbaren Spektrum, wobei zur Messung der Streuung, Absorption, Transmission und/oder Reflexion Transmissions- und Reflexionsmessung ferner ein Mikroskop (11) mit einer Halterung (12) für das zu untersuchende Probe (20) vorgesehen ist. Dem Verfahren liegt die Aufgabe zugrunde, ein alkoholisches Getränk innerhalb eines geschlossenen Behältnisses zu analysieren. Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass die Messung innerhalb eines unterhalb des Objektivs (110) des Mikroskops (11) an der Halterung (12) anordbaren, flaschenartigen Behältnisses (2) vorgenommen wird, wobei der einfallende Laserstrahl mit einem Macro-Objektiv (110) auf den interessierenden Probenbereich (20) innerhalb des flaschenartigen Behältnisses (2) fokussiert wird.
Abstract:
Vorrichtung zur optischen Detektion von Analyten in einer Probe, mit optoelektronischen Komponenten in Form von mehreren optischen Detektoren zum Empfang von Photonen und mehreren optischen Emittern zum Emittieren von Photonen, bei der mindestens drei Emitter in einer flächigen Anordnung, nicht auf einer Linie, vorgesehen sind, und mindestens drei Detektoren in einer flächigen Anordnung, nicht auf einer Linie, vorgesehen sind, und die Emitter und/oder die Detektoren mindestens drei unterschiedliche Wellenlängencharakteristika aufweisen.