Abstract:
Systems and methods for compact and low-cost vibrational spectroscopy platforms are described. Many embodiments implement deep learning processes to identify the relevant optical spectral features for the identification of an element from a set of elements. Several embodiments provide that resolution reduction and feature selection render efficient data analysis processes. By reducing the spectral data from the full wide-band high-resolution spectrum to a subset of spectral bands, a number of embodiments provide compact and low-cost hardware incorporation in spectroscopic platforms for element identification functions.
Abstract:
Spectral imaging systems are used to gather spectral image data on earthen material moving within an earthen material processing system, such as a mineral processing system or cement plant. Machine learning models such as 3D convolutional neural networks may be utilized to process the spectral image data to determine or classify one or more characteristics of the earthen material, such as ore grade, mineral alteration(s), moisture content, lithology and/or mineralogy. Such earthen material characteristics, or classifications thereof, may then be utilized to automatically control one or more operational characteristics of the earthen material processing system, such as rotational speed of milling equipment or flow rates of water or chemicals added to milling equipment or mineral concentration systems.
Abstract:
The present invention refers to a device (1) and a method of measuring a parameter of blood, preferably correlated to the presence or concentration of oxygen in blood. The invention provides to: excite a photosensitive element (18′) in contact with blood by excitation pulses, detect light responses of the photosensitive element corresponding to the excitation pulses, and analyze the plurality of luminescence decay curves at least two time windows (t1-tN). Moreover, the invention provides to: detect one or more light answer analog information regarding the luminescence curve decay at each time window, convert the analog information into digital data, process the digital data and the actual temperature value of blood by taking into account a plurality of data of previous measures of the parameter of blood performed during a previous training, and determine, as a result of the processing step, at least one value of said parameter of blood.
Abstract:
A method for deep learning video microscopy-based antimicrobial susceptibility testing of a bacterial strain in a sample by acquiring image sequences of individual bacterial cells of the bacterial strain in a subject sample before, during, and after exposure to each antibiotic at different concentrations. The image sequences are compressed into static images while preserving essential phenotypic features. Data representing the static images are input into a pre-trained deep learning (DL) model which generates output data; and antimicrobial susceptibility for the bacterial strain is determined from the output data.
Abstract:
Herein disclosed is a surface-enhanced Raman scattering (SERS) chip for generating multiple SERS profiles simultaneously from one or more analytes suspected to be in a sample. The SERS chip includes one or more substrates, and one or more Raman probes formed on the one or more substrates, wherein each of the one or more Raman probes includes a SERS-active nanoparticle grafted with a receptor molecule, (i) wherein the receptor molecule on each of the one or more Raman probes on one substrate is different from the receptor molecule of the one or more Raman probes on another substrate, and/or (ii) wherein the one or more Raman probes include two or more Raman probes and wherein the receptor molecule on each of the two or more Raman probes on one substrate is different, wherein the receptor molecule includes a thiol group proximal to the SERS-active nanoparticle and a functional group distal to the SERS-active nanoparticle, wherein the functional group interacts with the one or more analytes to induce a change in molecular vibration of the receptor molecule which is identifiable by surface-enhanced Raman scattering for generating the multiple SERS profiles. Herein also discloses a method of identifying one or more analytes suspected to be in a sample, the method includes contacting the surface-enhanced Raman scattering (SERS) chip described in various embodiments of the first aspect with a sample suspected to contain the one or more analytes, collecting SERS signals from the surface-enhanced Raman scattering (SERS) chip which has contacted the sample, constructing a combined-SERS profile from the SERS signals, and providing the combined-SERS profile to a device configured with a model trained to identify the one or more analytes from the combined-SERS profile.
Abstract:
A method for analyzing biological specimens by spectral imaging to provide a medical diagnosis includes obtaining spectral and visual images of biological specimens and registering the images to detect cell abnormalities, pre-cancerous cells, and cancerous cells. This method eliminates the bias and unreliability of diagnoses that is inherent in standard histopathological and other spectral methods. In addition, a method for correcting confounding spectral contributions that are frequently observed in microscopically acquired infrared spectra of cells and tissue includes performing a phase correction on the spectral data. This phase correction method may be used to correct various types of absorption spectra that are contaminated by reflective components.
Abstract:
A pseudo-active chemical imaging sensor including irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. The sensor may be applied to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor measures and processes a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
Abstract:
In one embodiment, apparatus and methods for determining a parameter of a target are disclosed. A target having an imaging structure and a scatterometry structure is provided. An image of the imaging structure is obtained with an imaging channel of a metrology tool. A scatterometry signal is also obtained from the scatterometry structure with a scatterometry channel of the metrology tool. At least one parameter, such as overlay error, of the target is determined based on both the image and the scatterometry signal.
Abstract:
A spectroscopic method for spectroscopic detection and identification of bacteria in culture is disclosed. The method incorporates construction of at least one data set, which may be a spectrum, interference pattern, or scattering pattern, from a cultured sample suspected of containing said bacteria. The data set is corrected for the presence of water in the sample, spectral features are extracted using a principal components analysis, and the features are classified using a learning algorithm. In some embodiments of the invention, for example, to differentiate MRSA from MSSA, a multimodal analysis is performed in which identification of the bacteria is made based on a spectrum of the sample, an interference pattern used to determine cell wall thickness, and a scattering pattern used to determine cell wall roughness. An apparatus for performing the method is also disclosed, one embodiment of which incorporates a multiple sample analyzer.