Abstract:
A method and apparatus for computing properties of a physical environment is provided, using a plurality of agents forming a distributed network embedded within the environment. The method comprises determining an initiating agent (200), transmitting a signal including a cumulative cost value to neighboring agents (202), and processing the signal at each neighboring agent to augment the cumulative cost value with local information (204). If multiple signals are received, determining which has the best cumulative cost value for generating a new signal (206), then treating the neighboring agent as an initiating agent (208) and transmitting the new signal to neighboring agents (208) and retaining the best augmented cost value in memory (210). Methods further include determining paths using shortest path computations, using dual gradients for aligning agents on a path between two reference agents, and discovering and converging agents on choke points.
Abstract:
A system includes a first aerial vehicle comprising one or more sensors configured to obtain an image of a worksite. The system also includes a controller configured to receive the image of the worksite, to generate a map of the worksite by overlaying information related to the worksite on the image, and to display the map via a display.
Abstract:
A method of operating a robot includes electronically receiving images and augmenting the images by overlaying a representation of the robot on the images. The robot representation includes user-selectable portions. The method includes electronically displaying the augmented images and receiving an indication of a selection of at least one user-selectable portion of the robot representation. The method also includes electronically displaying an intent to command the selected at least one user-selectable portion of the robot representation, receiving an input representative of a user interaction with at least one user-selectable portion, and issuing a command to the robot based on the user interaction.
Abstract:
A robotic work tool system includes a charging station and a robotic work tool. The robotic work tool includes a position determining device for determining a current position. The robotic work tool may be configured to determine that reliable navigation through the position determining device is no longer possible, such as when satellite signal reception is not possible, at a time point and position and in response thereto generate an obstacle map which gives information on the position of at least one obstacle, determine when an area will be shadowed with regards to satellite reception based on the obstacle map, and schedule operation of the robotic work tool accordingly.
Abstract:
A method of operating a robot includes electronically receiving images and augmenting the images by overlaying a representation of the robot on the images. The robot representation includes user-selectable portions. The method includes electronically displaying the augmented images and receiving an indication of a selection of at least one user-selectable portion of the robot representation. The method also includes electronically displaying an intent to command the selected at least one user-selectable portion of the robot representation, receiving an input representative of a user interaction with at least one user-selectable portion, and issuing a command to the robot based on the user interaction.
Abstract:
A mobile robot (100) including a drive system (200) having a forward drive direction (F), a controller (500) in communication with the drive system, and a volumetric point cloud imaging device (450) supported above the drive system and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane (5) in a direction of movement of the mobile robot. A dead zone sensor (490) has a detection field (492) arranged to detect an object in a volume of space (453) undetectable by the volumetric point cloud imaging device. The controller receives point cloud signals from the imaging device and detection signals from the dead zone sensor and issues drive commands to the drive system based at least in part on the received point cloud and detection signals.
Abstract:
Steuereinrichtung (6) zum wenigstens teilweise autonomen Betrieb eines Fahrzeugs (1), insbesondere eines militärischen Fahrzeugs (1), umfassend - wenigstens zwei Recheneinheiten (7a, 7b), die ein dezentrales System zur verteilten Ausführung miteinander kommunizierender Algorithmen (20, 23) bilden, - wenigstens ein erstes kabelgebundenes Kommunikationsnetzwerk (9) zur Kommunikation der Recheneinheiten (7a, 7b) untereinander, insbesondere im Rahmen einer Middleware-Umgebung, - wenigstens ein zweites, kabelgebundenes Kommunikationsnetzwerk (10a, 10b) zur Kommunikation jeder der Recheneinheiten (7a, 7b) mit wenigstens einem Sensor (2), - wobei die Recheneinheiten (7a, 7b) zur Nutzung des zweiten Kommunikationsnetzwerks (10a, 10b) zur Kommunikation untereinander bei einem Ausfall und/oder einer Überlastung des ersten Kommunikationsnetzwerks (9) ausgebildet sind.
Abstract:
Offenbart wird ein besatzungsloses Fahrzeug sowie ein Verband besatzungsloser Fahrzeuge, die zumindest über folgende Einrichtungen verfügen: ein Steuercomputer, der in der Lage ist, den Antrieb des Fahrzeugs sowie die Lenkung des Fahrzeugs zu steuern; eine Kommunikationseinrichtung, die in der Lage ist, mit einer Einsatzzentrale und/oder anderen, ggf. besatzungslosen Fahrzeugen zu kommunizieren; und einer Sensoreinrichtung, die in der Lage ist, über unterschiedliche Sensoren Signale aufzunehmen.