Abstract:
A method of making a field emitter includes following steps. A carbon nanotube layer is provided, and the carbon nanotube layer includes a first surface and a second surface opposite to each other. A carbon nanotube composite layer is formed via electroplating a first metal layer on the first surface and electroplating a second metal layer on the second surface. A first carbon nanotube layer and a second carbon nanotube layer is formed by separating apart the carbon nanotube composite layer, wherein a fracture surface is formed in the carbon nanotube composite layer, a number of first carbon nanotubes in the first carbon nanotube layer are exposed from the fracture surface, and a number of second carbon nanotubes in the second carbon nanotube layer are exposed from the fracture surface.
Abstract:
A field emission device may comprise: an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode; an insulating spacer around the emitter, the insulating spacer forming an opening that is a path of electrons emitted from the electron emission source; and/or a gate electrode around the opening. The electron emission source may comprise a plurality of graphene thin films vertically supported in the cathode electrode toward the opening.
Abstract:
An electronic device including a first conducting layer, a second conducting layer, and an insulating layer provided between the conducting layers. At least one side wall extends from the first conducting layer to the second conducting layer and includes at least a portion of the first conducting layer, the second conducting layer and the insulating layer. A bias voltage is applied between the first and second conducting layers, wherein responsive to the bias voltage, a two dimensional electron system is induced at least in one of the first conducting layer and the second conducting layer, and wherein electrons from the two dimensional electron system are emitted from the side wall side wall as a result of Coulombic repulsion and travel in air from the one of the first conducting layer and the second conducting layer to the other of the first conducting layer and the second conducting layer.
Abstract:
An electron-emitting device according to the present invention, comprises: an insulating member having a top face, a side face and a recess portion formed between the top face and the side face; a cathode electrode which is disposed on the side face and has an electron emitting portion located in a boundary portion between the side face and the recess portion; and a gate electrode which is disposed on the top face and of which an edge faces the electron emitting portion, wherein the boundary portion in which the electron emitting portion is located has concavity and convexity in a direction parallel to the top face.
Abstract:
An electron beam apparatus is provided having an electron emitting device which has a simple configuration, exhibits high electron emission efficiency, operates stably, and in which emitted electrons are effectively converged. The electron beam apparatus includes: an insulator having a notch on its surface; a gate positioned on the surface of the insulator; at least one cathode having a protruding portion protruding from an edge of the notch toward the gate, and positioned on the surface of the insulator so that the protruding portion is opposed to the gate; and an anode arranged to be opposed to the protruding portion via the gate, wherein the gate is formed on the surface of the insulator so that at least a part of a region opposed to the cathode is projected outward and recessed portions are provided in which ends of the gate are recessed and interpose the projected region.
Abstract:
A method for producing an electron-emitting device includes forming a first conductive film on a side surface of an insulation layer including the side surface and a top surface connected to the side surface; forming a second conductive film from the top surface to the side surface and on the first conductive film; and etching the second electrically conductive film.
Abstract:
An electron-emitting device manufacturing method includes a first step of forming a conductive film on an insulating layer having an upper surface and a side surface connected to the upper surface via a corner portion so as to extend from the side surface to the upper surface and cover at least a part of the corner portion, and a second step of etching the conductive film in a film thickness direction. At the first step, the conductive film is formed so that film density of the conductive film on the side surface of the insulating layer becomes the same as or higher than film density of the conductive film on the upper portion of the insulating film.
Abstract:
A method of manufacturing a field emission device having emitter shapes, comprise the steps of forming a first original plate having a major surface provided with emitter shapes, by cutting a surface portion of a base material, forming a first material layer on the major surface of the first original plate on which the emitter shapes are provided; separating the first material layer from the first original plate, thereby obtaining a second original plate having recesses onto which the emitter shapes on the first original plate are transferred, forming a second material layer on a major surface of the second original plate on which the recesses are provided; and separating the second material layer from the second original plate, thereby to obtain a substrate having projections portions onto which shapes of the recesses of the second original plate are transferred.
Abstract:
A Reflective Field Emission Display (FED) pixel element and system employing same are disclosed. In the FED system disclosed, each pixel element is composed of at least one emitter that is operable to emit electrons and at least one reflector that is operable to attract and reflect the emitted electrons onto a transparent anode layer that oppositely positioned with respect to the emitter and reflector and is operable to attract the reflected electrons. In one aspect of the invention, the emitter layer is shaped to bound the reflector layer forming an electrical boundary that focuses the reflected electron beam onto a phosphor layer interposed between the transparent layer. In another aspect of the invention, a high voltage and a corresponding high voltage phosphor is applied to the transparent anode layer. The use of high voltage and high voltage phosphor is advantageous as it causes the reflected electrons to be drawn deeper into the phosphor layer and, hence, reduces unwanted emissions back into the vacuum of the pixel element. In still another aspect of the invention, a plurality of phosphor layers are applied to the transparent layer to produce a color display as reflected electrons are attracted to the transparent layer.
Abstract:
A Reflective Field Emission Display (FED) pixel element and system employing same are disclosed. In the FED system disclosed, each pixel element is composed of at least one emitter that is operable to emit electrons and at least one reflector that is operable to attract and reflect the emitted electrons onto a transparent anode layer that oppositely positioned with respect to the emitter and reflector and is operable to attract the reflected electrons. In one aspect of the invention, the emitter layer is shaped to bound the reflector layer forming an electrical boundary that focuses the reflected electron beam onto a phosphor layer interposed between the transparent layer. In another aspect of the invention, a high voltage and a corresponding high voltage phosphor is applied to the transparent anode layer. The use of high voltage and high voltage phosphor is advantageous as it causes the reflected electrons to be drawn deeper into the phosphor layer and, hence, reduces unwanted emissions back into the vacuum of the pixel element. In still another aspect of the invention, a plurality of phosphor layers are applied to the transparent layer to produce a color display as reflected electrons are attracted to the transparent layer.