Abstract:
A single mode optical fiber having a core made from silica and less than or equal to about 11 weight % germania and having a maximum relative refractive index Δ1MAX. The optical fiber also has an inner cladding surrounding the core and having a minimum relative refractive index Δ2MIN, a first outer cladding surrounding the inner cladding and a second outer cladding surrounding the first outer cladding. The viscosity at 1650° C. of the second outer cladding minus the viscosity at 1650° C. of the first outer cladding is greater than 0.1e7 Poise, and Δ1MAX>Δ2MIN. The single mode optical fiber may also have an outer cladding surrounding the inner cladding made from silica or SiON. The first outer cladding has a maximum relative refractive index Δ3MAX, and Δ3MAX>Δ2MIN.
Abstract:
One embodiment of the disclosure relates to a method of making an optical fiber comprising the steps of: (i) exposing a silica based preform with at least one porous glass region having soot density of ρ to a gas mixture comprising SiCl4 having SiCl4 mole fraction ySiCl4 at a doping temperature Tdop such that parameter X is larger than 0.03 to form the chlorine treated preform, wherein X = 1 1 + [ ( ρ ρ s - ρ ) 0.209748 T dop Exp [ - 5435.33 / T dop ] y SiCl 4 3 / 4 ] and ρs is the density of the fully densified soot layer; and (ii) exposing the chlorine treated preform to temperatures above 1400° C. to completely sinter the preform to produce sintered optical fiber preform with a chlorine doped region; and (iii) drawing an optical fiber from the sintered optical preform.
Abstract translation:本公开的一个实施方案涉及一种制造光纤的方法,包括以下步骤:(i)将二氧化硅基预型体暴露于具有烟炱密度的至少一个多孔玻璃区域; 涉及在掺杂温度Tdop下包括具有SiCl 4摩尔分数ySiCl 4的SiCl 4的气体混合物,使得参数X大于0.03以形成经氯处理的预成型体,其中X = 11 + [(&rgr; s - &rgr;)0.209748 T dop Exp] [ - 5435.33 / T dop] y SiClü务4 3/4]和&rgr; s是完全致密的烟灰层的密度; 和(ii)将氯处理的预制件暴露于高于1400℃的温度下,以完全烧结预成型件,以制备具有氯掺杂区域的烧结光纤预制件; 和(iii)从烧结的光学预型件拉制光纤。
Abstract:
A method for forming an optical fiber preform and fibers drawn from the preform. The method includes forming a soot cladding monolith, inserting a consolidated core cane into the internal cavity, and processing the resulting core-cladding assembly to form a preform. Processing may include exposing the core-cladding assembly to a drying agent and/or dopant precursor, and sintering the core-cladding assembly in the presence of a reducing agent to densify the soot cladding monolith onto the core cane to form a preform. The preform features low hydroxyl content and low sensitivity to hydrogen. Fibers drawn from the preform exhibit low attenuation losses from absorption by the broad band centered near 1380 nm.
Abstract:
Embodiments of the present method of laser cutting a laser wavelength transparent glass article comprises feeding at least one glass article to a pulsed laser assembly having at least one pulsed laser, wherein the pulsed laser defines a laser beam focal line with a length of 0.1-100 mm, the glass article being comprised of two end sections, and at least one lateral surface disposed lengthwise between the end sections. The method further comprises laser cutting at least one perforation line onto the lateral surface of the glass article while there is relative motion between the glass article and the pulsed laser and separating the glass article along the at least one perforation line to yield a laser cut glass article.
Abstract:
An optical fiber having both low bend loss. The fiber has a central core region having refractive index Δ1, an inner cladding region having an outer radius r2>17 microns and refractive index Δ2 and a second cladding region surrounding the inner cladding region having refractive index Δ3. The fiber profile segments may be arranged so that Δ1>Δ3>Δ2. The fiber may exhibit a profile volume, V2 of the inner cladding region, calculated between r1 and r2, is at least 30% Δmicron2.
Abstract:
A method of making optical fibers that includes controlled cooling to produce fibers having a low concentration of non-bridging oxygen defects and low sensitivity to hydrogen. The method may include heating a fiber preform above its softening point, drawing a fiber from the heated preform and passing the fiber through two treatment stages. The fiber may enter the first treatment stage at a temperature between 1500° C. and 1700° C., may exit the first treatment stage at a temperature between 1200° C. and 1400° C., and may experience a cooling rate less than 5000° C./s in the first treatment stage. The fiber may enter the second treatment stage downstream from the first treatment stage at a temperature between 1200° C. and 1400° C., may exit the second treatment stage at a temperature between 1000° C. and 1150° C., and may experience a cooling rate between 5000° C./s and 12,000° C./s in the second treatment stage. The method may also include redirecting the fiber with a fluid bearing device or an air-turn device.
Abstract:
Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 μm or less, while providing a mode field diameter of 9.0 μm or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 μm or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
Abstract:
A method for forming an optical glass preform from a soot preform is provided. The method includes forming a soot preform, placing the soot preform in a furnace, and applying a vacuum through a centerline hole of the soot preform.
Abstract:
An optical fiber is provided that includes a fiber configured to transmit optical data in a plurality of modes or in a single mode; a core region in the fiber that comprises fluorine-doped silica; and a cladding in the fiber that surrounds the core region and that comprises fluorine-doped silica. The core region has a graded refractive index profile with an alpha of about 0.5 to 5. The core of the fiber may be set with a radius of approximately 6 to 50 microns. The cladding may also comprise one or a plurality of layers, including trench or moat regions of a relatively lower refractive index. Still further, an inner cladding may be doped with fluorine at a concentration greater than that in the core region. An outer cladding can comprise silica with fluorine at a concentration below or equal to that in the inner cladding.
Abstract:
Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 μm or less, while providing a mode field diameter of 9.0 μm or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 μm or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.