Abstract:
An improved method of launching and retrieving a UAV (Unmanned Aerial Vehicle) (10) is disclosed. The preferred method of launch involves carrying the UAV (10) up to altitude using a parasail (8) similar to that used to carry tourists aloft. The UAV is dropped and picks up enough airspeed in the dive to perform a pull-up into level controlled flight. The preferred method of recovery is for the UAV to fly into and latch onto the parasail tow line (4) or cables hanging off the tow line and then be winched back down to the boat (2).
Abstract:
A VTOL/STOL free wing aircraft (100) includes a free wing (110) having wings on opposite sides of a fuselage (102) connected to one another respectively adjacent fixed wing inboard or center root sections (117) fixedly attached to the fuselage (102) for free rotation about a spanwise axis (112). Horizontal and vertical tail surfaces (138, 140) are located at the rear end of a boom assembly (120) rotatably connected to the fuselage (102). A gearing (150) or screw rod (160) arrangement controlled by the pilot or remote control operator selectively relatively pivots the fuselage (102) in relation to the tail boom assembly (120) to enable the fuselage to assume a tilted or nose up configuration to enable VTOL/STOL flight.
Abstract:
A VTOL/STOL free wing aircraft (100) includes a free wing (110) having wings on opposite sides of a fuselage (102) connected to one another respectively adjacent fixed wing inboard or center root sections (117) fixedly attached to the fuselage (102) for free rotation about a spanwise axis (112). Horizontal and vertical tail surfaces (138, 140) are located at the rear end of a boom assembly (120) rotatably connected to the fuselage (102). A gearing (150) or screw rod (160) arrangement controlled by the pilot or remote control operator selectively relatively pivots the fuselage (102) in relation to the tail boom assembly (120) to enable the fuselage to assume a tilted or nose up configuration to enable VTOL/STOL flight.
Abstract:
Embodiments of the present invention provide improvements to UAV launching systems. The disclosed launching system eliminates the use of hydraulic fluid and compressed nitrogen or air by providing an electric motor-driven tape that causes movement of a shuttle along a launcher rail.
Abstract:
An aircraft capable of thrust-borne flight can be automatically retrieved, serviced, and launched using equipment suitable for use on a small vessel, or at a base with similarly limited space or irregular motion. For retrieval, the aircraft drops a tether, and pulls the tether at low relative speed into contact with a horizontal guide. The tether is pulled across the guide until the guide is captured by a hook or other end effector. The tether length is then adjusted as necessary, and the aircraft swings on the guide to hang in an inverted position. Translation of the tether along the guide then brings the aircraft to a docking carriage, in which the aircraft parks for servicing. For launch the carriage is swung upright, the end effector is released from the guide, and the aircraft thrusts into free flight. A full ground-handling cycle can thus be accomplished automatically with simple and economical apparatus. It can be used with low risk of damage, and requires only moderate accuracy in manual or automatic flight control.
Abstract:
An aircraft capable of thrust-borne flight can be automatically retrieved, serviced, and launched using equipment suitable for use on a small vessel, or a base with similarly limited space or irregular motion. For retrieval, the aircraft drops a weighted cable (2,3), and pulls it at low relative speed into a broad aperture ( l a ,Ψ a ) of a base apparatus (5). Continued translation of the aircraft may pull the cable clear of the apparatus, in which case it can continue in free flight and return for another retrieval attempt. Alternatively, the cable will be dragged along guiding surfaces (4) of the apparatus into and through a slot (6) or similar channel, until its free end is captured. The aircraft, having thus become anchored to the base station, is then pulled down by the cable into a receptacle (9). Guiding surfaces of the receptacle adjust the position and orientation of a probe (8) on the aircraft, while directing the probe to mate with a docking fixture. Once mated to the fixture, the cable can be released and stored aboard the aircraft; the aircraft can be automatically shut down; and fueling or other servicing can be completed through appropriate connectors in the docking fixture. The aircraft can remain docked as needed, and when desired, be automatically started and tested in preparation for launch. It can then be released into free flight. A full ground-handling cycle can thus accomplished with simple and economical apparatus. It can be used with low risk of damage, and only moderate piloting accuracy.