Abstract:
A furniture hinge with equipment comprises a toggle-type hinge (H) and a shock absorber (B). The latter is either a rotary (a first approach) or a line (a second approach) shock absorber. Irrespective of the approach, said shock absorber (B) is arranged transversely to a major longitudinal axis of the toggle-type hinge (H) and bound to a hinge pot. Thus, the invention concerns a new use of a rotary shock absorber, a new incorporation of a line shock absorber into a toggle-type furniture hinge, and a new combination of said toggle-type hinge and said rotary and line shock absorbers, respectively, said combination concerning the above two objects.
Abstract:
A system for use with a emergency exit door, comprising: a door opener including a stationary actuator with a movable distal arm for pushing the door open; a door strike mountable to a door frame having an opening to receive a latch of the emergency exit door, the electric door strike including a gate having a locked condition and a release condition; a controller connected to the door opener and the door strike; a remote activator having a triggered condition, which provides a signal to the controller when the remote activator is triggered, to unlock the gate and then the door opener, to open the emergency exit door.
Abstract:
The present disclosure relates to a door drive having a guide carriage which is connected to the door, is arranged movably in a guide rail and is in communication with the drive device of the door drive via a drive means and having a security against being pushed open consisting of a pawl which is held at the guide carriage and is movable between a release position and a securing position, with it engaging in a shape-matched manner at a latching element in the securing position, with the pawl being pivotably connected to a door dog connection element displaceably arranged in the guide carriage and wherein the pawl is moved out against the force of a spring on the closing of the door on the reaching of the end position and engages behind the latching element, whereby the securing position is reached, and wherein the pawl is pivotable via control cams into the release position on the opening of the door by a relative movement between the carriage and the door dog connection element.
Abstract:
An apparatus for automatically opening a swinging restroom door is provided. The apparatus comprises an actuator, a control unit, and a power assisted drive mechanism that can be connected to an existing door closing mechanism. The actuator comprises a proximity sensor and further comprises a series of iconic symbols corresponding to predetermined proximity zones. The control unit is in electronic communication with the actuator with which signals are exchanged. The power assisted drive mechanism is in electronic communication with the control unit and can be connected to an existing door closing mechanism wherein the actions of the door closing mechanism are reversed and the door is opened.
Abstract:
An apparatus for automatically opening a swinging restroom door is provided. The apparatus comprises an actuator, a control unit, and a power assisted drive mechanism that can be connected to an existing door closing mechanism. The actuator comprises a proximity sensor and further comprises a series of iconic symbols corresponding to predetermined proximity zones. The control unit is in electronic communication with the actuator with which signals are exchanged. The power assisted drive mechanism is in electronic communication with the control unit and can be connected to an existing door closing mechanism wherein the actions of the door closing mechanism are reversed and the door is opened.
Abstract:
A guide rail assembly for moving a closure panel of a motor vehicle between an open position and a closed position includes a guide rail fixedly secured to the motor vehicle. A slide mechanism slidably engages the guide rail. A rod has one end coupled to the slide mechanism and an opposing end coupled to the closure panel to move the closure panel as the slide mechanism slides along the guide rail. A drive is fixedly secured to the guide rail for selectively driving the slide mechanism along the guide rail. A clasp is operatively secured to the slide mechanism for selectively coupling the drive to the slide mechanism such that the drive moves the slide mechanism along the guide rail to move the closure panel between the open and closed positions when the slide mechanism is coupled with the drive.
Abstract:
A door driving unit includes a driving mechanism rotatable in a reciprocating manner within a predetermined operational angle range, a body portion fixed to a vehicle body, a first member driven by the driving mechanism, and a second member driven by the first member by being in contact with the first member. The first member and the second member are supported by a common shaft. The door driving unit further includes an engaging mechanism for engaging the first member and the second member with each other so that the first member and the second member rotate as a unit with each other within a first predetermined angle range when the first member drives to rotate the second member.
Abstract:
A screw drive mechanism connectable to at least one of a first machine portion and a second machine portion for moving the second machine portion relative to the first machine portion from a first position to a second position. The mechanism has a base for attachment to one of the first and the second machine portions and a motor attached to the base. It includes a drive screw having a rotary motion connection to the motor to be rotated thereby and a drive nut having an internally threaded bore engaged with the drive screw to receive a drive force from the drive screw. A drive nut connection is engaged with the drive nut for conveying the drive force to one of the first and the second machine portions. An anti-rotation member is attached to the drive nut connection, the anti-rotation member engaging the drive nut to prevent rotation thereof. The mechanism also includes an activation member attached to the base, the activation member contacting a disengaging surface portion of the anti-rotation member when such one of the first and the second machine portions is moved to the second position to place the anti-rotation member in a position disengaged from the drive nut so that the drive nut may rotate. A drive nut rotating device is attached to the base, the drive nut rotating device rotating the drive nut to a locking position when such one of the first and the second machine portions is moved to the second position.
Abstract:
An automatic chute closure for covering a chute opening wherein the chute closure includes a frame disposed around a chute opening, a chute door pivotally connected to the frame for movement between an opened and closed position, a door movement mechanism for opening and closing the chute door, a switch mechanism for activating and deactivating the door movement mechanism and a latch mechanism for securing the chute door in a closed position until the switch mechanism is activated to open the chute door. The automatic chute closure allows an operator to conveniently activate a single switch to open and close the chute door and to insure once the chute door is closed it is properly locked.
Abstract:
A method is disclosed for selective alteration and control of door movement modes utilizing an apparatus that is primarily non-hydraulic and incorporated with a known mechanism which is functional independently from the apparatus in one mode of operation and which includes a piston for controlling door closing characteristics by selected fluid flow within the mechanism. The apparatus includes a motor driven lead screw having a linearly movable shuttle unit mounted thereon, the shuttle unit being positioned relative to the piston of the mechanism to accommodate nonattached contact with the piston to urge the piston, when the shuttle unit is moved, in a direction that will at least provide selective assistance with door opening in another mode of operation. Operation of the apparatus is controlled by programming of a related controller including non-volatile memory.