Abstract:
Methods for generating a customized spectral profile, which can be used to generate a corresponding filter, lamp or other type of illuminant. A trial spectrum can be generated. A reference spectrum can be determined or otherwise obtained. A SOURCE spectrum can be determined or otherwise obtained. One or more optical indices can be calculated using the trial spectrum and one or more of the optical indices are optimized by varying the trial spectrum to generate the customized spectral profile. A radiation force parameter can be used to minimize unsafe build-up of light in spectral regions. Adaptations of color rendering parameters can be used in the optimization process. Smoothing parameters can be used to enable easier design of filter structures. A reflectance camera can be used to measure reflectance data at one or more pixels of a digital representation of an object to be illuminated.
Abstract:
The invention relates to a multivariate calibration which can be used when the optical system used for that method does not comprise a multi-channel detector such as a CCD sensor or a line array of photodiodes. An optical system without a multi-channel detector doesn't allow to carry out preprocessing steps. Thus there is the need to carry out these preprocessing steps in another way. It is suggested to partially replace the preprocessing step by a measurement of the optical signal, whereby the measurement comprises transmitting or reflecting the optical signal by an optical element, thereby weighing the optical signal by a spectral weighing function. The advantage of the invention is to teach how such an optical system without a bulky and expensive CCD sensor can be used to carry out a multivariate calibration and preprocessing steps.
Abstract:
An optical assembly is disclosed that includes an illumination source, a detection sensor, a monitor sensor, and an optical piece having a first side adapted to face a sample. The optical piece defines an illumination channel extending from the illumination source toward the first side, a detection channel extending from the first side toward the detection sensor, and a monitor channel extending from the illumination channel toward the monitor sensor. A spectrophotometer is also disclosed that includes a circuit board, illumination source and one or more sensors. The circuit board includes an optically transparent region, wherein the illumination source is mounted and situated relative to a first surface of the circuit board, so as to direct light through the optically transparent region. Each sensor is mounted and situated relative to a second surface of the circuit board opposite the first surface.
Abstract:
An electromagnetic beam chromatic shifting and directing means for use in reflectively directing a spectroscopic beam of electromagnetic radiation while simultaneously de-emphasizing intensity in a first range of wavelengths, (eg. the Visible wavelengths), and simultaneously relatively emphasizing intensity in another wavelength range, (eg. UV wavelengths).
Abstract:
An analysis system, tool, and method for performing downhole fluid analysis, such as within a wellbore. The analysis system, tool, and method provide for a tool including a spectroscope for use in downhole fluid analysis which utilizes an adaptive optical element such as a Micro Mirror Array (MMA) and two distinct light channels and detectors to provide real-time scaling or normalization.
Abstract:
Method and arrangement for changing the spectral composition and/or intensity of illumination light and/or specimen light in an adjustable manner, wherein a spatial separation into radiation components of different polarization is carried out with a first polarizing device, a spectral, spatial splitting of at least one radiation component is carried out with first dispersion device, the polarization state of at least one part of the spectrally spatially split radiation component is changed, and a spatial separation and/or combination of radiation components of different polarization are/is carried out by a second polarizing device, wherein a spatial combination of radiation components which are changed and not changed with respect to their polarization state is advantageously carried out by a second dispersion device.
Abstract:
A system and method for identifying primary color chromaticity coordinates of a red, green and blue light sources includes a tristimulus filter the receives the combined light generated by the light sources. The light sources are preferably a group of red, green and blue light emitting diodes. A processor is configured to generate a plurality of test control signals that sets a desired intensity value for each of the red, green and blue LEDs. Based on these test control signals, the system is configured to measure three sets of chromaticity coordinates corresponding to the combined light generated by these red, green and blue LEDs. The processor thereafter calculates the color chromaticity coordinates of the LEDs, based on the measured coordinates of the combined light, and the intensity values of the LEDs, and the intensity values of the combined light. This calculation in accordance with one embodiment of the invention is accomplished by solving a matrix equation. Once the color coordinates of the individual light sources is uniquely calculated, the system measures the intensity values of light for each of the light sources that is necessary to provide a combined light with a desired color chromaticity coordinates. These intensity values can be used in a feedback control circuit to maintain the desired combined light as the LEDs change their characteristics from batch to batch or over time.
Abstract:
The present invention provides an apparatus and method for enhancing the system response of a photodetector array based spectrometer. For a spectrometer with a given system response curve, secondary light sources are provided to improve the system response in the spectral ranges where the dynamic range is less than at the peak of the curve. In one embodiment, multiple light sources can be combined by means of multiple branches of fibre optic bundles. The secondary light sources may be used in combination with suitable shaping filters and/or masks to further flatten the system response.
Abstract:
A tunable spectral source includes an enclosure having first and second apertures; an optical dispersive element positioned in the enclosure; and multiple pixel source elements that are individually controllable for selectively directing one or more broadband light signals through the first aperture to irradiate the optical dispersive element. Each of the broadband light signals irradiates the optical dispersive element at a unique angle of incidence. The optical dispersive element disperses the broadband light signals into spectral component signals at dispersion angles that are dependent upon the angle of incidence of each broadband light signal that irradiates the optical dispersive element. The portions of the spectral component signals that are emitted through the second aperture are determined by selecting one or more particular pixel source elements to irradiate the optical dispersive element.
Abstract:
An optical filter having a variable spectral transmittance function of selectable shape is described which includes a spectrum forming element for dispersing a light beam into a characteristic spectrum, an optical system for forming an image of the spectrum and directing the image into a multi-element electronic spatial light modulator, such as a liquid crystal display or electrophoretic display, and an optical system for projecting the spectrally filtered light as a directed beam.