Abstract:
A method for irradiating onto a target optical system plural linearly polarized rays having different polarization directions, and for measuring a polarization characteristic of the target optical system including a birefringence amount R and a fast axis Φ includes the steps of irradiating linearly polarized ray having a polarization direction θ onto the target optical system and obtaining a centroid amount P of the ray that has transmitted through the target optical system, and obtaining the birefringence amount R and the fast axis Φ from P=-R•cos(2θ-Φ) or P=R•cos(2θ-Φ).
Abstract:
Interferometry apparatus which comprises a measurement light beam (2a, 2b) and a reference light beam (2c, 2d) which interact with each other to cause a spatial fringe pattern (24). An optical device (12) is provided which interacts with the spatial fringe pattern (24), such that light is spatially separated into different directions (30, 32, 34, 36). The intensity modulation in two or more directions of the spatially separated light is phase shifted. The optical device may comprise, for example, a diffractive device, a refractive device or a diffractive optical element.
Abstract:
The present invention relates to an apparatus and to a method of monitoring an interferometer (2), comprising the steps of: coupling a first optical signal (62) into the interferometer (2) and into a wavelength reference element (18), detecting a first resulting interference signal (68) being a result of interference of parts of the first optical signal (62) in the interferometer (2), detecting a resulting reference signal (70) of the wavelength reference element (18), the resulting reference signal (70) being a result of interaction of the first optical signal (62) with the wavelength reference element (18), and comparing the first resulting interference signal (68) with the resulting reference signal (70) to detect a drift of the interferometer (2), if any.
Abstract:
A polarization diversity receiver system for yielding multiple heterodyne optical output signals from an incident optical beam having a p-polarized component and an s-polarized component comprises first and second sequentially-arrayed polarizing beamsplitters (42, 54), and three photodetectors (48, 58, 64), each of which receives a heterodyne optical signal. The polarization diversity receiver system tracks the largest of these three signals, and uses only this largest one for subsequent signal processing. There is a minimum for this largest signal that is dependent on the input polarizations of two optical fields whose beat note is the heterodyne signal, so that one can maximize the minimum of this largest of the three heterodyne signals. The first polarizing beamsplitter (42) ideally splits the incident beam into a transmitted beam portion (T), including approximately 100% of the p-polarized component and approximately 33% of the s-polarized component, and a reflected beam portion (R) including approximately 0% of the p-polarized component and approximately 67% of the s-polarized component. The reflected beam portion (R) exits from the first polarizing beamsplitter (42) as a first heterodyne optical output signal, and impinges on a first photodetector (48). The transmitted beam portion (T) exits from the first beamsplitter (42), and then undergoes an effective 45 o rotation of its polarization eigenstates around its axis of propagation, either prior to or during its passage through the second polarizing beamsplitter (54). The second beamsplitter (54) splits the rotated transmitted beam portion into second and third heterodyne optical output signals which respectively impinge upon second and third photodetectors (58, 64).
Abstract:
A polarization interferometer comprises a light source (1), a collimator (2), a first polarization element (3), a system of double-refracting elements (4, 5, 6) and a second polarizing element (7) which polarizes the light emerging from the double-refracting element (4, 5, 6) and directs it to a photon detector (8). The double-refractive element (4, 5, 6) consists of two optical wedges (5, 6) which together constitute a right parallepiped and which are arranged so as to slide relative to each other along opposed side surfaces, and a double-refracting plate (4) with parallel faces which acts as a compensator. The optical axis of the compensator (4) makes a finite angle with those of the two wedges (5, 6) in the plane perpendicular to the light beam, the optical axes of both wedges (5, 6) being coincident. The optical axes of the two polarizers (3, 7) are mutually perpendicular or parallel and are not aligned parallel to the axes of the two wedges (5, 6) of the double-refractive element (4, 5, 6).
Abstract:
Das Polarisationsinterferometer weist eine Lichtquelle (1), einen Kollimator (2), ein erstes polarisierendes Element (3), ein System von doppelbrechenden Elementen (4,5,6) und ein zweites polarisierendes Element (7) auf, welches das aus dem doppelbrechenden Element (4,5,6) austretende Licht polarisiert und einem Photonendetektor (8) zuführt. Das doppelbrechende Element (4,5,6) besteht dabei aus zwei, längs entgegengesetzter Seitenflächen gegeneinander verschiebbar angeordneten, sich zu einem Quader ergänzenden, optischen Keile (5,6) und einer als Kompensator dienenden doppelbrechenden planparallelen Platte (4). Die optische Achse des Kompensators (4) ist gegenüber derjenigen der beiden Keile (5,6) in der Ebene senkrecht zum Lichtstrahl um einen endlichen Winkel verdreht, wobei die optischen Achsen der beiden Keile (5,6) übereinstimmen. Die optischen Achsen der beiden Polarisatoren (3,7) stehen senkrecht oder parallel zueinander und sind nicht parallel zu den Achsen der beiden Keile (5,6) des doppelbrechenden Elementes (4,5,6) ausgerichtet. Ein monochromatischer Lichtstrahl (9) wird in den von der Lichtquelle (1) erzeugten parallen Lichtstrahl eingekoppelt und nach Durchquerung mindestens des doppelbrechenden Elementes (4,5,6) wieder ausgekoppelt und auf einen Photonendetektor (13) geführt.
Abstract:
An apparatus is described for classifying particles (30) and includes an optical system for transmitting to a focal plane which includes at least one particle (30), two substantially parallel optical beams (22, 24), the beams (22, 24) being initially mutually coherent but of different polarizations. The beams (22, 24) are displaced and focused in the focal plane. A further optical system is positioned in the path which the beam takes after departing from the focal plane and combines the beams so that a particle-induced phase shift in one beam is manifest by a change in elliptical polarization of the combined beams. A first detector (52) is responsive to the beam's intensity along a first polarization axis to produce a first output and a second detector (54) is responsive to the beams intensity along a second polarization axis to produce a second output. The first and second outputs are added (56) to provide an extinction signal and, in a separate device (218), are subtracted to provide a phase shift signal. The extinction signal and phase shift signal are both fed to a processor (60) which classifies a particle in accordance therewith.
Abstract:
Un interféromètre polarisant comprend une source de lumière (1), un collimateur (2), un premier élément polarisant (3), un système d'éléments biréfringents (4, 5, 6) et un deuxième élément polarisant (7) qui polarise la lumière qui sort de l'élément biréfringent (4, 5, 6) et la transmet à un détecteur (8) de photons. L'élément biréfringent (4, 5, 6) comprend deux coins optiques (5, 6) mobiles l'un par rapport à l'autre le long de faces latérales opposées et qui forment ensemble un carré, ainsi qu'une plaque (4) biréfringente à faces planes et parallèles qui sert de compensateur. L'axe optique du compensateur (4) est décalé d'un angle fini par rapport à l'axe des deux coins (5, 6) sur le plan perpendiculaire au rayon de lumière, les axes optiques des deux coins (5, 6) coïncidant. Les axes optiques des deux polariseurs (3, 7) sont perpendiculaires ou parallèles l'un à l'autre et ne sont pas parallèles aux axes des deux coins (5, 6) de l'élément biréfringent (4, 5, 6).
Abstract in simplified Chinese:一种用于将具有不同偏振方向之复数线性偏振光束照射在一目标光学系统上、及用于测量一包含双折射量R及快轴���的目标光学系统之偏振特性的方法,该方法包含该等步骤:将具有偏振方向���之线性偏振光束照射在该目标光学系统上,且获得一已通过该目标光学系统的光束之质心量P;及由P=-R‧cos(2���-���)或P=R‧cos(2���-���)获得该双折射量R与该快轴���。