Abstract:
A multi-spectrum, multi-channel imaging spectrometer includes two or more input slits or other input for each input channel. The input slits are vertically and horizontally displaced from each other. The vertical displacements cause spectra from the channels to be vertically displaced on a single image sensor on a stationary image plane. The horizontal displacements cause light beams from the input channels to strike a convex grating at different incidence angles and produce separate spectra having different spectral ranges. A retroflective spectrometer includes a convex grating that, by diffraction, disperses wavelengths of light at different angles and orders approximately back along an incident light beam. A single concave mirror reflects both the input channel and the dispersed spectrum. A prism, set of mirrors, beam splitters or other optical element(s) folds the input channel(s) of a spectrometer to enable the input(s) to be moved away from the plan of the image sensor.
Abstract:
An encoder spectrograph is used to analyze radiation from one or more samples in various configurations. The radiation is analyzed by spatially modulating the radiation after it has been dispersed by wavelength or imaged along a line. Dual encoder spectrographs may be used to encode radiation using a single modulator.
Abstract:
An apparatus (300') and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources (310, 311), one or more sampling accessories (330, 331) for positioning the sample volumes, one or more optically dispersive elements (350), a focal plane array (FPA) (370) arranged to detect the dispersed light beams, and a processor (380) and display (390) to control the FPA (370), and display(390) to control the FPA (370) and display IR spectrograph.
Abstract:
A multi-slit spectrometer is combined with a two-dimensional detector array (D) to enable simultaneous spectral analysis of several objects, improving the signal-to-noise ratio of multispectral imagery. The multi-slit spectrometer includes a multi-slit structure defining a plurality of parallel thin slits (S, S'), and a first lens (L) for directing object light onto the multi-slit structure. A second lens (C) collimates and directs light which has passed through the slits of the multi-slit structure onto a light dispersing element (P) such as a dispersing prism or a diffraction grating. A third lens (L>1
Abstract:
A multi-slit spectrometer is combined with a two-dimensional detector array (D) to enable simultaneous spectral analysis of several objects, improving the signal-to-noise ratio of multispectral imagery. The multi-slit spectrometer includes a multi-slit structure defining a plurality of parallel thin slits (S, S'), and a first lens (L) for directing object light onto the multi-slit structure. A second lens (C) collimates and directs light which has passed through the slits of the multi-slit structure onto a light dispersing element (P) such as a dispersing prism or a diffraction grating. A third lens (L1) focuses light which has passed through the light dispersing element onto the two-dimensional detector array at an image plane (A). A two-dimensional detector array (D) of detector elements is placed at the image plane. The slits are separated by a separation distance equal to an integral multiple of the detector width dimension, where the multiple is equal to (N times the number of slits) plus or minus one, where N is an integer. In an airborne sensor, a mirror (M) which rotates at an angular velocity related to the velocity of the airborne platform directs object light onto the first lens, freezing the image from one or more objects onto the multi-slit structure for an integration time.
Abstract:
A system and method of high-speed microscopy using a two-photon microscope with spectral resolution. The microscope is operable to provide two- to five-dimensional fluorescence images of samples, including two or three spatial dimensions, a spectral dimension (for fluorescence emission), and a temporal dimension (on a scale of less than approximately one second). Two-dimensional (spatial) images with a complete wavelength spectrum are generated from a single scan of a sample. The microscope may include one of a multi-beam point scanning microscope, a single beam line scanning microscope, and a multi-beam line scanning microscope. The line scans may be formed using one or more of curved mirrors and lenses. The multiple beams may be formed using one of a grating, an array of lenses, and a beam splitter.
Abstract:
A spectrometer 1A includes spectroscopic units 2A, 2B, and 2C. A light passing part 21A, a reflection part 11A, a common reflection part 12, a dispersive part 40A, and a light detection part 22A included in the spectroscopic unit 2A are arranged along a reference line RL1 when viewed in a Z-axis direction. A light passing part 21B, a reflection part 11B, the common reflection part 12, a dispersive part 40B, and a light detection part 22B included in the spectroscopic unit 2B are arranged along a reference line RL2 when viewed in the Z-axis direction. A light passing part 21C, a reflection part 11C, the common reflection part 12, a dispersive part 40C, and a light detection part 22C included in the spectroscopic unit 2C are arranged along a reference line RL3 when viewed in the Z-axis direction. The reference line RL1, the reference line RL2, and the reference line RL3 intersect with one another.