Abstract:
A boundary scan cell in a semiconductor memory device (memory core) is provided corresponding to each terminal for performing a boundary scan test. A test controller and a read/write control circuit cause the boundary scan cell to latch input write data in a late write operation, until a next write cycle of the write cycle at which the write data was input from the terminal.
Abstract:
In a flash memory write mode, a microcomputer operation mode setting circuit sets a mode setting signal at one level. At this stage, a voltage drop caused by an LPF formed of a resistor, an inductor, and a capacitor can be suppressed at a low level. In a mode other than the flash memory write mode, the microcomputer operation mode setting circuit sets the mode setting signal at another level. At this stage, high frequency noise can be removed by the LPF formed of the resistor, the inductor, and the capacitor.
Abstract:
Level control signals are both set to H level, and potentials of power supply lines are both set to be lower than a power supply potential. In this manner, a gate leakage current during waiting and writing operation of a memory cell array can significantly be reduced. The level control signals are set to L level and H level respectively, and solely the potential of one of the power supply lines is set to be lower than the power supply potential. In this manner, power consumption during a reading operation of the memory cell array can be reduced.
Abstract:
A microcomputer is provided having a memory card interface capable of correctly latching data even when a card such as an MMC card is connected thereto. In the microcomputer having an interface with an external device such as a memory card, the interface unit is provided with an output driver connected to an external terminal for outputting a clock signal to output the clock signal and with an equivalent load circuit capable of imparting, to the clock signal extracted from an arbitrary position in a stage previous to the output driver in a clock signal path, delay equivalent to delay resulting from an external load connected to the external terminal in order to generate a clock signal for latching data inputted from the memory card.
Abstract:
Disclosed herein is a nonvolatile memory device having a plurality of nonvolatile memory cells. In the nonvolatile memory cell, a memory gate electrode is formed over a first semiconductor region with a gate insulating film and a gate nitride film interposed therebetween. First and second switch gate electrodes, and first and second signal electrodes used as source/drain electrodes are formed on both sides of the memory gate electrode. Electrons are injected into the gate nitride film from the source side so that each of the memory cells stores information therein. The memory gate electrode and the switch gate electrodes extend in the same direction. Thus, even if a high voltage is applied to the memory gate electrode of each write-intended memory cell which uses the memory gate electrode and switch gate electrodes in common, and write and write blocking voltages are applied through the first and second signal electrodes, each memory cell intended for write non-selection can avoid the application of a high electric field thereto owing to the switch gate electrodes held in a cut-off state.
Abstract:
A threshold compensating circuit generates a bias potential VBIAS, that is, a threshold voltage of a MOS transistor offset by a given value. A gate-source voltage having compensation for variation in threshold voltage is thus applied to a transistor. By using a differential amplifier having this transistor as a current source, a voltage down-converter less susceptible to variation in threshold voltage caused by process variation and temperature can be implemented.
Abstract:
In a network in which a plurality of terminals share one communication channel, signal collision is avoided and a predetermined signal is transmitted with a higher priority level. Priority levels are defined so that they are common to all the packets to be sent by nodes (including terminals and relating devices) on a network. Respective slots that regulate timing for sending out packets are assigned to the respective priority levels. Each slot is determined with reference to a time at which an ongoing packet transmission on the communication channel has finished. The priority levels are allocated in such a manner that packets having higher priority levels (packets to be sent out with higher priority) are allocated to slots having earlier timing.
Abstract:
Each of N memory blocks of first to Nth stages includes a plurality of first and second driver units. The plurality of first and second driver units are respectively provided corresponding to one end and another end of a plurality of digit lines included in each memory block. Each of the first driver units in memory blocks before a selected memory block connects a corresponding digit line to a first voltage according to a voltage level on a digit line of the same row in a memory block of a previous stage. A second driver unit in the selected memory block connects a corresponding digit line to a second voltage in order to supply a data write current. In other words, digit lines in the memory blocks before the selected memory block are not used as current lines but as signal lines.
Abstract:
A processing technique of a semiconductor substrate which can improve a capability of a solid immersion lens in case of processing the semiconductor substrate and forming the solid immersion lens on its surface is provided. A focused ion beam (5) is irradiated on a semiconductor substrate (1), and a salient part (2) acting as a solid immersion lens is formed on its main surface (3a). At this time, a cutting amount of the semiconductor substrate (1) by the focused ion beam (5) is adjusted by making the irradiation time of the focused ion beam (5) to the semiconductor substrate (1) change. According to this, a surface of the salient part (2) has a curved surface of high precision, and a capability of the salient part (2) as the solid immersion lens is improved.
Abstract:
An asynchronous data transmitting apparatus includes data signal transmission lines; two control transmission lines having a minimum delay and maximum delay respectively; a transmitter; and a receiver. The transmitter includes a data transmitting unit that transmits a data signal through the data signal transmission lines, depending on a transmit clock; and control transmitting units that transmit control signals through the control transmission lines, depending on the transmit clock. The receiver includes a receive clock generator that generates a read clock from the control signals; and a data receiving unit that receives the data signal through the data signal transmission line, depending on the read clock.