Abstract:
A control device for a double-deck elevator system having an upper deck and a lower deck, includes a group control device for assigning the upper and lower decks to respond to car calls from the upper and lower decks and boarding hall calls from a plurality of floors. The control device further includes an assignment control device for determining whether a plurality of the car calls and boarding hall calls can be responded to simultaneously and for directing said group control device to reassign the upper and lower decks to respond to the plurality of car calls and boarding hall calls simultaneously.
Abstract:
An administrative controlling apparatus for elevators, for calling an elevator before a passenger's operation of a hall call button when a passenger who has come to an elevator hall is detected by passenger detection devices. The direction in which the passenger would like to go is predicted based upon the hall call and past passengers. Accordingly, the past usage is regarded as a basis for a statistical learning process. On this basis, the selection of a stand-by elevator or the selection of a tentative allocation elevator is effected. Also, a call is interrupted in accordance with the absence or presence of an elevator call.
Abstract:
A group-supervising control system for an elevator includes a cage position prediction unit for predicting cage positions after a predetermined time period based on the present positions, a service available time period distribution calculation unit for calculating the time periods until the service is available (predicted arrival times of a cage capable of responding to a hall call earliest) based on the predicted cage positions, and an assignment correction value calculation unit for calculating assignment correction values for correcting assignment estimation values based on the distributions of the time periods until the service is available. Unevenness in the time periods until the service is available with regard to the respective floors is decreased.
Abstract:
In a vertically movable elevator group management control apparatus for control of a plurality of transversely shiftable cars among plural shafts, control is done by storing route data with respect to each said car, generating target floor data including a target floor, based on car call data obtained in correspondence with each said car and station call data as obtained correspondingly to each floor, estimating the time taken for said car to reach said target floor, based on at least said route data, said target floor data and said car call data, and assigning a certain car to a certain floor call, based on the estimated arrival time.
Abstract:
An elevator control system employing a micro-processor-based group controller (FIG. 2) which communicates with the cars (3, 4) of the elevator system to determine conditions of the cars and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, to provide assignments of the hall calls to the cars based on the summation for each car, with respect to each call, a weighted summation of a plurality of system response factors, some indicative, and some not, of conditions of the car irrespective of the call to be assigned, assigning "bonuses" and "penalties" to them in the weighted summation. In the invention, rather than a set of unvarying bonuses and penalties being assigned based on the relative system response factors, the assigned bonuses and penalties are varied based on the perceived intensity of traffic, as measured by, for example, a past average waiting time and the elapsed time since registration of the hall call, a selected past five minute average waiting time being exemplary. Exemplary apparatus (FIGS. 1 and 2) and a logic flow diagram (FIG. 3) illustrate a specific manner of assigning calls to cars. Tables set forth exemplary varying bonus and penalty values to be assigned, depending on the ratio of the hall call registration time to the selected average hall call waiting time (Tables 1 and 2) or on their differences (Table 3).
Abstract:
An elevator system including supervisory system control for controlling a plurality of elevator cars to answer calls for elevator service. The supervisory system control, using information provided by the cars, groups the floors of a building, and service directions therefrom, into sets, each of which indicates those floors and service directions served by the same combination of in-service elevator cars. The supervisory system control periodically determines, for each set, the average number of floors and service directions therefrom, and the average number of calls, per in-service elevator car serving the set. The supervisory system control then assigns floors and service directions therefrom to the cars, using these averages, to substantially equally distribute the floors, and service directions therefrom, for each set, among the elevator cars serving the set, as well as to substantially equally distribute the calls for elevator service among the elevator cars.
Abstract:
Die Erfindung betrifft ein Verfahren zur Steuerung einer Transportanlage (1) und eine solche Transportanlage (1) mit mindestens zwei Förderabschnitten (2, 3) und mindestens drei Kabinen (11, 12, 13, 14, 15, 16), die im zyklischen Betrieb einzeln verfahren werden, wobei eine jede Kabine ausgehend von einer ersten Startposition einen ersten Förderabschnitt (2) und anschließend einen zweiten Förderabschnitt (3) zur ersten Startposition zurück durchläuft, wobei zumindest entlang eines Förderabschnitts (2, 3) mindestens eine Haltestelle vorgesehen wird und eine oder mehrere aufeinanderfolgende Haltestellen jeweils einem Block (21, 22, 23) zugeordnet werden, und wobei die Fahrt der Kabinen derart gesteuert wird, dass die Kabinen der Reihe nach jeweils einen vorab festgelegten Block anfahren und für jede Kabine zum Durchlaufen des ersten und des zweiten Förderabschnitts eine gleiche Zykluszeit (T) vorgegeben wird.
Abstract:
A method schedules cars of an elevator system in a building. The method begins execution whenever a newly arrived passenger presses an up or down button to generate a call for service. For each car, determine a first waiting time for all existing passengers if the car is assigned to service the call, based on future states of the elevator system. For each car, determine a second waiting time of future passengers if the car is assigned to service the call, based on a landing pattern of the cars. For each car, combine the first and second waiting times to produce an adjusted waiting time, the method ends by assigning a particular car having a lowest adjusted waiting time to service the call and minimize an average waiting time of all passengers.