Abstract:
The present invention refers to an arrangement ('C') adapted to evaluate the spectral intensity of and/or a changing in the spectral intensity of an electro-magnetic beam (1) or a bundle of beams (2), whereby said bundle of beams is directed towards and received by a lens element (3a) and where said lens element (3a) is adapted to direct said bundle of beams towards a multitude of electro-magnetic beam to an electric signal transforming means (4), named as an opto-electric transforming means, said means adapted to generate an electric signal (5) representative to said spectral intensity of or said changing in said spectral intensity of said beam (1, 2). The invention suggests that a multitude of lens elements (3, 3a) shall expose dimensions adapted within a sub-micron scale (10-6m) and that at least one of said opto-electric transforming means (4), preferably a multitude of said means (4), is arranged adjacent to said lens element (3a).
Abstract:
The invention relates to a method and to an assembly for operating an optical imaging system for detecting the characteristic values of the wavelength-dependent behavior of an illuminated specimen, especially of the emission and/or absorption behavior, preferably of the fluorescence and/or luminescence and/or phosphorescence and/or enzyme-activated light emission and/or enzyme-activated fluorescence, preferably for the purpose of operating a laser scanning microscope. According to the inventive method, the image spot information of the specimen is broken down into its spectral components in a spatially resolved and wavelength-independent manner on the detector end, and for different spectral components at least one summation is made.
Abstract:
Methods and apparatus for measuring an electromagnetic radiation response property associated with a substrate (210) and calibrating an electromagnetic measurement device (100) are disclosed. The methods and apparatus generate electromagnetic waves and capture a portion of the generated waves after the waves pass through a first polarized filter (236), reflect from a substrate (210), and pass through a second polarized filter (204) arranged in a cross polar arrangement with respect to the first polarized filter. In addition, the apparatus captures electromagnetic waves that pass through an attenuating filter (206) and reflect from one or more calibration standards (208). Digital data is determined from the captured electromagnetic waves. The digital data is used to recalibrate the apparatus.
Abstract:
A rotary spectrometer including a plurality of input ports. Each input port may be arranged to receive an optical waveguide carrying electromagnetic radiation. The spectrometer also includes a plurality of optical bandpass filters, which are housed on a first body that rotates under the control of a motor so that each optical bandpass filter may be brought into alignment with each input port. Further, the spectrometer includes a plurality of detector circuits disposed on a second body that rotates with the first body. Each detector circuit is optoelectrically coupled to one of the plurality of optical bandpass filters, thereby resulting in each detector circuit being dedicated to responding to a range of wavelengths determined by the bandpass filter to which it is optoelectrically coupled.
Abstract:
The invention relates to a method and to an assembly for operating an optical imaging system for detecting the characteristic values of the wavelength-dependent behavior of an illuminated specimen, especially of the emission and/or absorption behavior, preferably of the fluorescence and/or luminescence and/or phosphorescence and/or enzyme-activated light emission and/or enzyme-activated fluorescence, preferably for the purpose of operating a laser scanning microscope. According to the inventive method, the image spot information of the specimen is broken down into its spectral components in a spatially resolved and wavelength-independent manner on the detector end, and for different spectral components at least one summation is made.
Abstract:
The present invention relates to spectral analysis systems and methods for determining physical and chemical properties of a sample by measuring the optical characteristics of light emitted from the sample. In one embodiment, a probe head (100) for use with a spectrometer includes a reflector (118) for illuminating a sample volume (150) disposed circumferentially about the light source (140) of the probe head. In another embodiment, a probe head includes an optical blocking element for forcing the optical path between the light source and an optical pick-up optically connected to the spectrometer into the sample. The probe head also includes a reference shutter for selectively blocking light emitted from the sample from reaching the optical pick-up facilitate calibration of the spectrometer.
Abstract:
A method and apparatus for the spectrochemical analysis of a sample in which a solid state array detector (82) is used to detect radiation (62) of spectrochemical interest. The invention involves the use of a shutter (72) adjacent the entrance aperture (70) of a polychromator (74-80) to expose the detector (82) to the radiation (62) for varying lengths of time whereby for short duration exposure times charge accumulation in elements (i.e. pixels) of the detector (82) due to high intensity components of the radiation is limited and for longer exposure times charge accumulation in elements (pixels) of the detector (82) due to feeble intesity components of radiation (62) is increased. This ensures that each reading of the detector (82) includes at least one exposure in which the amount of charge accumulated at each wavelength of interest is neither too little or too great. The problems of feeble radiation components not being accurately measurable and of high intensity radiation components exceeding the charge carrying capacity of elements (pixels) of the detector (82) are thereby able to be avoided. An attenuator (90) may be placed between the radiation source (60) and the detector (82) to permit longer exposure times to be used for very high intensity radiation.
Abstract:
A light detection device includes: a Fabry-Perot interference filter provided with a light transmission region; a light detector configured to detect light transmitted through the light transmission region; a package having an opening and accommodating the Fabry-Perot interference filter and the light detector; and a light transmitting unit arranged on an inner surface of the package so as to close an opening, the light transmitting unit including a band pass filter configured to transmit light incident on the light transmission region. When viewed from a direction parallel to the line, an outer edge of the Fabry-Perot interference filter is positioned outside an outer edge of the opening, and an outer edge of the light transmitting unit is positioned outside the outer edge of the Fabry-Perot interference filter.
Abstract:
An electronic device may have a display with a cover layer. An ambient light sensor may be aligned with an ambient light sensor window formed from an opening in a masking layer on the cover layer in an inactive portion of the display. To help mask the ambient light sensor window from view, the ambient light sensor window may be provided with a black coating that matches the appearance of surrounding masking layer material while allowing light to reach the ambient light sensor. The black coating may be formed from a black physical vapor deposition thin-film inorganic layer with a high index of refraction. An antireflection layer formed from a stack of dielectric layers may be interposed between the black thin-film inorganic layer and the display cover layer.
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image from the tooth and a second spectral range for exciting a fluorescence image from the tooth. A polarizing beamsplitter in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor, wherein the second polarization state is orthogonal to the first polarization state. A first lens in the return path directs image-bearing light from the tooth toward the sensor, and obtains image data from the portion of the light having the second polarization state. A long-pass filter in the return path attenuates light in the second spectral range.