Abstract:
The invention relates to a hybrid aircraft (F). According to the invention, a suitable position for mounting an energy generation unit (14) in the aircraft is identified, said energy generation unit comprising an internal combustion engine (34) and an electric generator (30) that is coupled thereto via a shaft. Independently of the position of the energy generation unit (14), a position is also identified for a thrust generation unit (12) comprising an electric motor (24) and a propeller (20) that is coupled thereto via a shaft (22). When the aircraft (F) is built, the thrust generation unit (12) and the energy generation unit (14) are disposed in the positions identified therefor. The generator (30) is then coupled to the electric motor (24) via an electric transmission device (16).
Abstract:
An aerial vehicle comprises an elongate envelope within which are at least one first compartment for holding a lighter than air gas and at least one second compartment for holding atmospheric air and said at least one second compartment having an inlet and an outlet and at least one pair of wings extending laterally from the envelope; said wings being planar units with a leading and trailing edge, the width of the wings from their leading edges to their trailing edges being substantially less than the length of the envelope with airfoil portions fitted between the leading and trailing edges of the wing: the top and bottom of the wings are mirror images of one another; in which forward motion of the vehicle is obtainable without trust through alternate diving and climbing motion.
Abstract:
A ducted fan core for an unmanned aerial vehicle is provided that accommodates a wide variety of payloads. The ducted fan core comprises a frame, attached to which are an engine, gearbox assembly, fan, and a plurality of control vanes. A first surface on the frame comprises a plurality of connects or electrical traces. The plurality of connects are used to removably attach a variety of pods carrying various payloads. Thus, a wide variety of payloads may be delivered using the same unmanned aerial vehicle, simply by removing and attaching different pods to a fixed vehicle core. These pods may be shaped so as to form part of the vehicle exterior, and when the pods are attached to the frame, they enhance the aerodynamics of the vehicle.
Abstract:
There is provided an Unmanned Air Vehicle (UAV) including an engine and an airframe, including means for performing a deep stall maneuver at least one inflatable sleeve connected or connectable to the airframe, and means for inflating the sleeve during flight, wherein the inflated sleeve extends along the lower side of the airframe so as to protect same during deep stall landing. A method for operating an Unmanned Air Vehicle (UAV), including an engine and an airframe is also provided.
Abstract:
An aircraft for carrying at least one rigid cargo container includes a beam structure with a forward fuselage attached to the forward end of the beam structure and an empennage attached to the rearward end of the beam structure. Wings and engines are mounted relative to the beam structure and a fairing creates a cargo bay able to receive standard sized intermodal cargo containers. Intermodal cargo containers of light construction and rigid structure are positioned within the cargo bay and securely mounted therein. The beam structure is designed to support flight, takeoffs and landings when the aircraft is empty but requires the added strength of the containers securely mounted to the beam structure when the aircraft is loaded. The aircraft is contemplated to be a drone.
Abstract:
The invention relates to an aircraft having a first propulsion unit with an air inlet above the fuselage of the aircraft and a second propulsion unit with an air inlet below the fuselage of the aircraft, the fuselage of the aircraft having recesses for receiving the propulsion units which are arranged such that the first and the second propulsion unit are arranged above one another in the plane set by the longitudinal and vertical axis of the aircraft. The propulsion unit comprises an engine, a housing having an air inlet, devices for the releasable fastening of the propulsion unit to the fuselage of the aircraft as well as devices for establishing a releasable connection of electric supply and data lines as well as fuel lines between the propulsion unit and the fuselage of an aircraft.
Abstract:
A vertical takeoff and landing (VTOL) air vehicle disclosed. The air vehicle can be manned or unmanned. In one embodiment, the air vehicle includes two shrouded propellers, a fuselage and a gyroscopic stabilization disk installed in the fuselage. The gyroscopic stabilization disk can be configured to provide sufficient angular momentum, by sufficient mass and/or sufficient angular velocity, such that the air vehicle is gyroscopically stabilized during various phases of flight. In one embodiment the fuselage is fixedly attached to the shrouded propellers. In another embodiment, the shrouded propellers are pivotably mounted to the fuselage.
Abstract:
A rotary aircraft (rotorcraft) in which the entire aircraft rotates about its center of mass as it flies, and in which the center of mass is located external to the aircraft in the generally triangular region formed by the aircraft's single wing and two propellers. As the aircraft flies, the two propellers provide torque about the center of mass and rotate the wing, which provides lift for the aircraft. The aircraft is controllable via a stationary radio transmitter that sends commands for pitch, roll, yaw and altitude. A receiver in the aircraft uses the transmitted signal to establish the aircraft's instantaneous orientation in combination with the sent commands to generate control signals that drive the propeller motors that affect the aircraft's attitude. Pitch and roll are controlled by pulse width modulation of the propeller motor voltages in order to affect the thrust at specific portions of the aircraft's rotation cycle.
Abstract:
A sea-launched and recovered unmanned aircraft is disclosed. The aircraft is jet-powered and has features and systems to maintain watertight integrity such that it may be released from a submerged submarine or dropped into a body of water by a ship or an aircraft. The aircraft is buoyant and remains at or near the water surface before its rockets are ignited. The rockets propel the air vehicle out of the sea and accelerate it to flying speed at which time a jet engine is started and the rockets are jettisoned. The air vehicle performs its mission independently or in conjunction with other ones of the air vehicles. The air vehicle then returns to an assigned splashdown point at sea via, for example, an engine-off “whip-stall” maneuver. A submarine or ship may retrieve the air vehicle and readies it for another mission.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes an extendable boom. A launch carriage is positioned on a launch guide structure of the boom and carries the aircraft during takeoff. An energy reservoir is configured to provide energy to the launch carriage during takeoff of the aircraft, and can absorb energy from the launch carriage to decelerate the launch carriage after takeoff. The apparatus can further include a transmission that smoothly and rapidly accelerates and/or decelerates the launch carriage.