Abstract:
A method for forming a hollow microneedle structure includes processing the front side of a wafer to form at least one microneedle projecting from a substrate with a first part of a through-bore, formed by a dry etching process, passing through the microneedle and through a part of a thickness of the substrate. The backside of the wafer is also processed to form a second part of the through-bore by a wet etching process.
Abstract:
A method of manufacturing microneedles is provided, the method includes (i) depositing a substance onto a first surface and (ii) forming a solid needle-like shape from the substance. The substance may be deposited in non-solid form and subsequently solidified. A method provides an array of such microneedles.
Abstract:
A method of fabricating a microneedle is disclosed. The method includes forming at least one recess in a substrate, the at least one recess comprising an apex, forming an electrically seed layer on the substrate including the at least one recess, forming at least one electrically nonconductive pattern on a portion of the seed layer, the at least one nonconductive pattern being a pattern for a sensory area, plating an electrically conductive material on the seed layer to create a plated layer with an opening that exposes a portion of the nonconductive pattern and separating the plated layer from the seed layer and the at least one nonconductive pattern to release a hollow microneedle comprising a tip and at least one sensory area.
Abstract:
A method of wet etching produces high-precision microneedle arrays for use in medical applications. The method achieves precise process control over microneedle fabrication, at single wafer or batch-level, using wet etching of silicon with potassium hydroxide (KOH) solution by accurately identifying the etch time endpoint. Hence, microneedles of an exactly required height, shape, sharpness and surface quality are achieved. The outcome is a reliable, reproducible, robust and relatively inexpensive microneedle fabrication process. Microneedles formed by KOH wet etching have extremely smooth surfaces and exhibit superior mechanical and structural robustness to their dry etched counterparts. These properties afford extra reliability to such silicon microneedles, making them ideal for medical applications. The needles can also be hollowed. Wet etched silicon microneedles can then be employed as masters to replicate the improved surface and structural properties in other materials (such as polymers) by moulding.
Abstract:
An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.
Abstract:
A method of fabricating a micro-needle array is provided. The method of fabricating a micro-needle array having a substrate having a first surface and a second surface spaced in a predetermined interval apart from the first surface, includes patterning on the first surface, thereby forming a shape of micro-needle bodies. Further, micro-passageways are formed that penetrate the first surface of the substrate from the second surface by a porous silicon process, and integrates the micro-passageways, thereby forming the bodies and channels of micro-needles.
Abstract:
The invention relates to a method of fabricating a microneedle array in a substrate, a drug delivery device comprising one or more microneedles extending upwards from the front surface of the substrate, the microneedles having a generally conical-shaped body defined by a plurality of surfaces sloping upwards from a relatively broad base to a tip, and one or more substances coating the microneedles, the one or more substances being operable to be administered to a patient, wherein the tips of the one or more microneedles are sufficiently sharp to penetrate an outer layer of the skin of the patient, and a method of administering one or more substances to a patient using the device.
Abstract:
The present invention provides a microneedle incorporating a base that is broad relative to a height of the microneedle, to minimize breakage. The microneedle further includes a fluid channel and a beveled non-coring tip. Preferably arrays of such microneedles are fabricated utilizing conventional semiconductor derived micro-scale fabrication techniques. A dot pattern mask is formed on an upper surface of a silicon substrate, with each orifice of the dot pattern mask corresponding to a desired location of a microneedle. Orifices are formed that pass completely through the substrate by etching. A nitride pattern mask is formed to mask all areas in which a nitride layer is not desired. A nitride layer is then deposited on the bottom of the silicon substrate, on the walls of the orifice, and on the top of the silicon substrate around the periphery of the orifice. The nitride layer around the periphery of the orifice is offset somewhat, such that one side of the orifice has a larger nitride layer. Anisotropic etching is used to remove a substantial portion of the substrate, creating a plurality of angular, blunt, and generally pyramidal-shaped microneedles. A subsequent removal of the nitride layer, followed by an isotropic etching step, softens and rounds out the blunt angular microneedles, providing generally conical-shaped microneedles. The uneven nitride layer adjacent the orifice ensures that the microneedles will include a beveled tip. Such microneedle arrays are preferably incorporated into handheld diagnostic and drug delivery systems.
Abstract:
This invention relates to a method for locally depositing coatings on microtip apex. The technical procedures are listed as following. (1) Using parting layer to cover the tip body and only leave the apex protruded A parting layer was deposited on the entire microtip sample surface. The film thickness is thicker than the height of microtip. By thinning the parting layer, the tip apex was exposed, but the body remains being covered. The height of the exposed tip apex can be controlled by adjusting the thinning parameters. (2) Surface cleaning and passivation treatment Surface cleaning and passivation treatment are performed on the apex of the microtip according to actual needs. (3) Coating Based on actual needs, a selected functional thin film is coated on the microtip sample. (4) Remove the parting layer to form the locally coated tip By using an etchant that only react with the parting layer but not the microtip and the coated material, the parting layer can selectively removed, leave a locally coated microtip. Using the aforementioned method, it is able to perform surface cleaning and locally thin film depositing on microtip apex.
Abstract:
A method of providing a microprojection (180) on the surface of a first material, the microprojection having a base portion adjacent the first material and a remote, or a tip portion, and a duct (182) at least in a region of the tip portion and the method comprising micro-machining the first material to provide the micro-projection duct. Various uses of the microprojection are also disclosed including light guides and cuvettes from micro-analytical systems, microneedles for transdermal fluid delivery or the like.