Abstract:
This invention relates to fuel oil, especially middle distillate fuel oil, compositions comprising middle distillate fuel oil and at least one fuel-soluble or fuel dispersible calcium and/or magnesium salt.
Abstract:
The operation of marine diesel engines is improved through use of a defined fuel composition, containing one or more additives comprising a methal detergent, a non-metal detergent or both. The fuel is supplied to Diesel engines which operate in a maximum speed range of 1000 rpm (4-stroke engine) respectively 2500 rpm (2-stroke engine). The power output is greater than 200 bph. The cylinder bore is greater than 100 mm (2-stroke engine) while the piston stroke shall be greater than 150 mm (4-stroke engine) respectively greater than 120 mm (2-stroke engine). The metal containing detergent is a neutral calcium sulfonate, salicylate or calcium phenate. The non-metal containing detergent is a hydrocarbyl succinimide.
Abstract:
A process for regenerating a particulate filter placed in an exhaust gas line of an internal combustion engine including burning particles emitted during combustion of fuel in the engine and retained in the filter in the presence of an additive containing at least one low-molecular-weight compound including at least two hydroxyl groups and wherein the hydroxyl groups are released in a cold state and an apparatus for regenerating a particulate filter placed in an exhaust gas line of an internal combustion engine, wherein regeneration includes burning particles retained in the filter and emitted during combustion of a fuel in the engine, in the presence of an additive, including a reservoir of an additive solution containing at least one low-molecular-weight compound including at least two hydroxyl groups which are released in a cold state, a meter enabling precise and variable metering of selected quantities of the additive solution injected, a start/stop controller, an electromagnetic injector controller, and pressure regulator driven by and automatically controlled by the engine.
Abstract:
An overbased magnesium composition deposit control additive for residual fuel oils and turbine fuels is an overbased magnesium sulfonate, carboxylate or phenate or mixtures thereof containing at least 14% and upwards to about 18% by weight of magnesium and containing a succinic anhydride and lower carboxylic acid co-promoter reaction product. The additive when added to fuel oils, such as residual fuel oils containing high asphaltenes, reduces, if not eliminates, magnesium/asphaltene deposits or sediment and the consequential plugging of filters. The additive also reduces, if not eliminates, vanadium caused corrosion in the turbine. The invention is also the process for preparing the overbased composition or deposit control additive, wherein the overbasing reaction incorporates the combination of a lower carboxylic acid, preferably acetic acid and a succinic anhydride, preferably dodecenyl succinic anhydride (DDSA), as the co-promoter.
Abstract:
A fuel additive which comprises a compound selected from a novel amine, oxygen-containing and nitrogen-containing compounds having selected structures. The inventive additive when blended with a gasoline serves to suppress sludge or deposits in fuel intake systems or combustion chambers for example of an automobile engine.
Abstract:
A fuel additive which comprises an amide compound of the formula ##STR1## wherein R.sup.1 is hydrogen or a C.sub.1 -C.sub.30 hydrocarbon group, R.sup.2, R.sup.3, R.sup.4 and R.sup.5 each are selected from the group consisting of hydrogen, a C.sub.1 -C.sub.10 hydrocarbon group and a group of formula (II), provided that at least one of R.sup.2, R.sup.3, R.sup.4 and R.sup.5 group of formula (II) R.sup.6 is a C.sub.2 -C.sub.6 alkylene group, R.sup.7 is a C.sub.1 -C.sub.6 alkylene group, a is an integer of 1-100, b is an integer of 0-100, the sum of a and b being equal to 1-200, c is an integer of 1-3, d is an integer of 0-2, the sum of c and d being equal to 3, and X is selected from the group consisting of hydrogen, a C.sub.1 -C.sub.30 hydrocarbon group, a group of formula (III), and a group of formula (IV), wherein formulas (II), (III) and (IV) are defined in the disclosure.
Abstract:
A composition of an oil of lubricating viscosity; a polymer, soluble in the lubricant composition and having a number average molecular weight of greater than 50,000; and a combustible solvent in which the remaining components of the lubricant are soluble, provides a composition suitable for lubricating a two-stroke cycle engine. The lubricant composition provides good lubricity with low smoke generation.
Abstract:
The present invention relates to a process for reducing nitrogen oxides emissions from a diesel engine, which comprises preparing an emulsion of water in diesel fuel which contains a catalytically effective amount of catalyst composition and a lubricity additive, and supplying said emulsion to a diesel engine for combusting therein, whereby combustion of the emulsion leads to a reduction in the nitrogen oxides emissions from the diesel engine when compared with combustion of diesel fuel alone.
Abstract:
A fuel composition for internal combustion engines, and more particularly, a fuel composition for internal combustion engines containing less than about 0.5 gram of lead per gallon of fuel is described. The fuel provides acceptable valve seat protection in engines designed to operate on leaded or unleaded fuels. Ordinarily, leaded fuels contain components to reduce deposits within the engine cylinders which unleaded fuels do not. As leaded fuels become unavailable, some refiners will add valve protecting components to the unleaded fuels to satisfy the leaded market. Such fuels will then potentially cause an increase in the octane requirement. This invention deals with polybasic carboxylate additives having valve seat protection properties which avoid or minimize the octane requirement increase.
Abstract:
Sodium containing additives in gasoline reduce valve seat recession and give other improvements in automotive internal combustion engines operating on lead-free gasoline. Preferably, the sodium-containing additive is a sodium derivative of an organic compound, e.g., a salt of an organic acid, or a dispersion of a sodium salt of an inorganic acid, e.g., a sodium carbonate dispersion.