Abstract:
A novel approach for chemical imaging is disclosed. In one embodiment, the disclosure relates to a system for producing a spatially accurate wavelength-resolved image of a sample from photons scattered from the sample, comprising an optical lens; a first optical fiber bundle of M fibers; a second optical fiber bundle of N fibers; an optical fiber switch; and a charge coupled device, wherein the image comprises plural sub-images, and wherein each sub-image is formed from photons scattered from a predetermined two spatial dimension portion of the sample, and wherein the scattered photons forming each sub-image have a predetermined wavelength different from a predetermined wavelength of scattered photons forming the other sub-images, and wherein the scattered photons for each sub-image are collected substantially simultaneously.
Abstract:
A double-pass scanning monochromator for use in an optical spectrum analyzer includes an input optical fiber for emitting an input light beam, a diffraction grating for diffracting the input light beam to produce a spatially dispersed light beam, a slit for passing a selected portion of the dispersed light beam, a motor for rotating the diffraction grating, a shaft angle encoder for sensing grating position, and an output optical fiber. The light that passes through the slit is directed to the diffraction grating and is recombined by the diffraction grating to produce an output light beam. The light beam to be analyzed is incident on the diffraction grating during first and second passes. A polarization rotation device rotates the polarization components of the light beam by 90.degree. between the first and second passes so that the output of the monochromator is independent of the polarization of the input light beam. The output optical fiber is translated by a micropositioning assembly in a plane perpendicular to the output light beam during rotation of the diffraction grating to automatically track the output light beam and to provide optical chopping.
Abstract:
A double pass scanning monochromator for use in an optical spectrum analyzer includes an input optical fiber for emitting an input light beam, a diffraction grating for diffracting the input light beam to produce a spatially dispersed light beam, a slit for passing a selected portion of the dispersed light beam, a motor for rotating the diffraction grating, a shaft angle encoder for sensing grating position, and an output optical fiber. The light that passes through the slit is directed to the diffraction grating and is recombined by the diffraction grating to produce an output light beam. The light beam to be analyzed is incident on the diffraction grating during first and second passes. A polarization rotation device rotates the polarization components of the light beam by 90.degree. between the first and second passes so that the output of the monochromator is independent of the polarization of the input light beam. The output optical fiber is translated by a micropositioning assembly in a plane perpendicular to the output light beam during rotation of the diffraction grating to automatically track the output light beam and to provide optical chopping.
Abstract:
A solid monolithic spectrograph utilizes the Czerny-Turner geometric confration. It has a base constructed of BK7 optical glass to which all components are affixed with optical epoxy. The compact spectrograph operates in the visible spectrum in second order thereby permitting it to be smaller by a factor of two than if it operated in first order. The spectrograph is programmable and is capable of simultaneous multi-channel measurements of wavelengths and bandwidths of sources in the visible and near infrared spectral regions.
Abstract:
The disclosure provides a portable Raman device that includes a laser for emitting exciting light; a spectrometer for receiving Raman scattered light and converting the Raman scattered light into an electrical signal after beam splitting; a probe for leading the exciting light to irradiate on a sample and collect the Raman scattered light of the sample; and a fiber system connected between the laser and the probe as well as between the probe and the spectrometer so as to conduct light transmission. In comparison to conventional Raman devices, the portable Raman device of the disclosure has a simplified optical system, such that placement of components of the Raman device are more flexible, the whole size of the Raman device is reduced, and thus requirements of size miniaturization and quick real-time measurement are satisfied.
Abstract:
Provided is a multifocal spectrometric device capable of simultaneously performing a measurement of a plurality of sample with high sensitivity, with no restriction on the magnification. A multifocal spectrometric device 10 is a device in which beams of signal light emitted from a plurality of predetermined observation areas on samples S placed in a sample placement section (sample holder 13) are introduced into a spectrograph and thereby dispersed into spectra, the device including: a plurality of objective lenses (objective light-condensing sections) 111 individually located at positions which respectively and optically face the plurality of observation areas; and spectrograph input sections 151 provided in such a manner that each of the plurality of objective lenses 111 has one corresponding spectrograph input section 151, for introducing signal light passing through the corresponding objective lenses 111 into the spectrograph 17. Since each objective lens 111 only needs to observe one observation area, both the magnification and the numerical aperture NA can be simultaneously increased. Consequently, the proportion of the amount of light collected with the objective lens 111 to the entire amount of signal light emitted from the sample S within each observation area becomes high, and the measurement accuracy also becomes high.
Abstract:
The present invention provides a spectral apparatus for spectrally separating light including a predetermined wavelength, including a slit that the light enters, a first optical system configured to collimate the light from the slit, a transmissive type diffraction element configured to diffract the light from the first optical system, and a second optical system including a first mirror configured to reflect the light diffracted by the transmissive type diffraction element, and a second mirror configured to reflect the light reflected by the first mirror and diffracted by the transmissive type diffraction element, and configured to make the light reciprocally travel between the first mirror and the second mirror via the transmissive type diffraction element.
Abstract:
The present disclosure describes methods and systems that combine Raman spectroscopy performed in a manner that utilizes one or more of widefield illumination, simultaneous multipoint Raman spectral acquisition, and spectral unmixing for the purpose of high throughput polymorph screening. Features of this methodology include: (a) high throughput polymorph screening to reduce crystal orientation effects on Raman spectra; (b) in- well multi-polymorph screening using increased statistical sampling; and (c) multipoint spectral sampling to enable spectral unmixing.