Abstract:
A spectroscopy system and a method thereof are provided to carry out both low and high resolution spectroscopy by including a monochromater and a spectrometer having zoom-in and zoom-out functions. A spectroscopy system comprises an optical system, a first detector, and a second detector. The optical system receives lights scattered from a first area of a sample surface in response to receiving lights of different excitation wavelengths and scatters the lights according to their wave lengths. The first detector is mounted on a first moveable detector mount. The second detector is mounted on a second moveable detector mount. The first moveable detector mount moves the first detector to a first position related to the first excitation wavelength. The second moveable detector mount moves the second detector to a second position related to the second excitation wavelength. The first detector is set to detect a part where the light from the first area is received on the sample surface in response to receiving the first excitation wavelength light. The second detector is set to detect a part where the light from the first area is received on the sample surface in response to receiving the second excitation wavelength light.
Abstract:
The present invention is thus directed to an automated system of varying the optical path length in a sample that a light from a spectrophotometer must travel through. Such arrangements allow a user to easily vary the optical path length while also providing the user with an easy way to clean and prepare a transmission cell for optical interrogation. Such path length control can be automatically controlled by a programmable control system to quickly collect and stores data from different path lengths as needed for different spectrographic analysis. Moreover, the system utilizes configured wedge shaped windows to best minimize the reflections of light which cause periodic variation in transmission at different wave lengths (commonly described as “channel spectra”). Such a system, as presented herein, is able to return best-match spectra with far fewer computational steps and greater speed than if all possible combinations of reference spectra are considered.
Abstract:
A system for wide-range spectral measurement includes one or more broadband sources, an adjustable Fabry-Perot etalon, and a detector. The one or more broadband sources is to illuminate a sample, wherein the one or more broadband sources have a short broadband source coherence length. The adjustable Fabry-Perot etalon is to optically process the reflected light to extract spectral information with fine spectral resolution. The detector is to detect reflected light from the sample, wherein the reflected light is comprised of multiple narrow-band subsets of the illumination light having long coherence lengths and is optically processed using a plurality of settings for the adjustable Fabry-Perot etalon, and wherein the plurality of settings includes a separation of the Fabry-Perot etalon plates that is greater than the broadband source coherence length but that is less than the long coherence lengths.
Abstract:
Techniques and mechanisms for a monolithic photonic integrated circuit (PIC) to provide spectrometry functionality. In an embodiment, the PIC comprises a photonic device, a first waveguide and a second waveguide, wherein one of the first waveguide and the second waveguide includes a released portion which is free to move relative to a substrate of the PIC. During a metering cycle to evaluate a material under test, control logic operates an actuator to successively configure a plurality of positions of the released portion relative to the photonic device. In another embodiment, light from the first waveguide is variously diffracted by a grating of the photonic device during the metering cycle, where portions of the light are directed into the second waveguide. Different wavelengths of light diffracted into the second waveguide may be successively detected, for different positions of the released portion, to determine spectrometric measurements over a range of wavelength.
Abstract:
A spectrophotometer optics system is provided. The spectrophotometer optics system includes an optical sensing array and an optical waveguide including an input side and an output side. The input side of the optical waveguide receives input light and the optical sensing array is located at the output side of optical waveguide. The optical waveguide is configured to carry light to be analyzed by total internal reflection to the output side of the optical waveguide and to direct the light to be analyzed toward the optical sensing array. The spectrophotometer optics system includes an optical dispersive element configured to separate the light to be analyzed into separate wavelength components, and the optical dispersive element is supported by the optical waveguide.
Abstract:
The invention relates to an arrangement for the spectrometric measurement of products such as cereals, oleaginous products or derived products. According to the invention, the arrangement is characterised in that it comprises a mechanism (17, 18, 19) for the selective adjustment of the position of the light beam in the vertical and horizontal planes, and a selective adjustment device for ensuring the parallelism of the rays of the light beam. The invention is especially applicable to the area of cereals.
Abstract:
This invention concerns spectroscopy apparatus comprising a light source (101) arranged to generate a light profile (110) on a sample, a photodetector (103) having at least one photodetector element (104) for detecting characteristic light generated from interaction of the sample with light from the light source (101), a support (109) for supporting the sample, the support (109) movable relative to the light profile (110), and a processing unit (121). The processing unit (121) is arranged to associate a spectral value recorded by the photodetector element (104) at a particular time with a point on the sample predicted to have generated the characteristic light recorded by the photodetector element (104) at the particular time based on relative motion anticipated to have occurred between the support (109) and the light profile (110).
Abstract:
A camera for polarimetric, multispectral imaging is described. Such cameras are used in photonics, computational imaging and multispectral imaging in which both multispectral and polarimetric sensing modalities are used simultaneously for detection, recognition and identification. The camera enables multiple spectral images to be recorded simultaneously using polarising beamsplitters and mirrors to divide the image according polarimetric and spectral bands. These multiple, polarised images are recorded on a single focal plane array (FPA) simultaneously. An image processor allows for the resolution of the subsequent image to be improved.