Abstract:
The invention concerns a method for the production of single crystal aluminium nitride doped with scandium and/or yttrium, with scandium and/or yttrium contents in the range 0.01 atom % to 50 atom % with respect to 100 atom % of the total quantity of the doped aluminium nitride, characterized in that in a crucible, in the presence of a gas selected from nitrogen or a noble gas, or a mixture of nitrogen and a noble gas: a doping material selected from scandium, yttrium, scandium nitride or yttrium nitride or a mixture thereof and a source material formed from aluminium nitride are sublimated and recondensed onto a seed material which is selected from aluminium nitride or aluminium nitride doped with scandium and/or yttrium. The invention also concerns a corresponding device as well as the corresponding single crystal products and their use, whereupon the basis for novel components based on layers or stacks of layers of aluminium gallium nitride, indium aluminium nitride or indium aluminium gallium nitride is generated.
Abstract:
The invention relates to a laser diode (10) which has at least one active layer (12) which is arranged within a resonator (14) and is operatively connected to a outcoupling element (16), and further at least one contact layer (18) for coupling charge carriers into the active layer (12), wherein the resonator (14) comprises at least a first section (20) and a second section (22), wherein the second section (22) comprises a plurality of separate resistor elements (24) having a specific electrical resistivity greater than the specific electrical resistivity of the regions (26) between adjacent resistor elements (24), wherein a width (W3) of the resistor elements (24) along a longitudinal axis (X1) of the active layer (12) is less than 20 μm, and a projection of the resistor elements (24) on the active layer (12) along the first axis (Z1) overlap with at least 10% of the active layer (12).
Abstract:
A method for growing beta phase of gallium oxide (β-Ga2O3) single crystals from the melt contained within a metal crucible surrounded by a thermal insulation and heated by a heater. A growth atmosphere provided into a growth furnace has a variable oxygen concentration or partial pressure in such a way that the oxygen concentration reaches a growth oxygen concentration value (C2, C2′, C2″) in the concentration range (SC) of 5-100 vol. % below the melting temperature (MT) of Ga2O3 or at the melting temperature (MT) or after complete melting of the Ga2O3 starting material adapted to minimize creation of metallic gallium amount and thus eutectic formation with the metal crucible. During the crystal growth step of the β-Ga2O3 single crystal from the melt at the growth temperature (GT) the growth oxygen concentration value (C2, C2′, C2″) is maintained within the oxygen concentration range (SC).
Abstract:
The present invention provides means and methods for equipping a polypeptide of interest at its C-terminus with a versatile adaptor amino acid that allows the functionalization of the polypeptide of interest.
Abstract:
Disclosed are oxo-hydroquinazolines that are useful as selective TSHR agonists. The compounds may be used for detecting or treating thyroid cancer, or treating a bone degenerative disorder.
Abstract:
The invention discloses a device for selecting pulses comprising an optical waveguide for guiding the optical radiation along an axis; comprising a first electro-optical modulator designed to modulate the optical transparency of the waveguide; comprising a second electro-optical modulator designed to modulate the optical transparency of the waveguide, wherein the first modulator and the second modulator are arranged one after the other on the axis of the waveguide, and further comprising at least one control circuit designed to actuate the first modulator and the second modulator at offset times, and characterized in that a substrate of a semiconductive material is provided, the waveguide and the at least one control circuit are arranged on the substrate.
Abstract:
The invention relates to a method for the identification of a channel modulator, such as an agonist or antagonist, that interacts with one or more or LRRC8A, LRRC8B, LRRC8C, LRRC8D and/or LRRC8E and/or protein complexes thereof. The invention further relates to an isolated heteromeric protein complex comprising one or more or LRRC8A, LRRC8B, LRRC8C, LRRC8D and/or LRRC8E for use in such methods, in addition to kits suitable for carrying out such methods. The invention therefore relate preferably to the use of LRRC8 proteins and complexes thereof for the identification of VRAC (VSOAC) modulators.
Abstract:
According to the invention, a semiconductor device composite structure is provided which comprises an initial substrate with discrete, integrated devices and a heat removal structure. The heat removal structure comprises: a bond layer which is attached to the initial substrate or the devices, a heat removal structure which is attached on the bond layer and which consists of a material with a specific thermal conductivity which is at least double the level of the average specific heat conductivity of the initial substrate or the devices, and one or more metallic thermal bridges which thermally connect the devices with the heat removal structure via the bond layer. The thermal bridges are designed as vertical through connections (vias) through the bond and heat removal structure. The invention furthermore relates to an associated production method.
Abstract:
The present invention relates to an encapsulant for ultraviolet light emitting diodes. It is an object of the present invention to provide an encapsulant for UV LEDs emitting below 350 nm resulting in an increased extraction efficiency of the LED. According to the invention, a light emitting diode is disclosed comprising a radiation zone (12) which is electrically connected to a first contact (14) and to a second contact (16), and an encapsulant (18) encapsulating at least part of the radiation zone (12), the first contact (14) and the second contact (16), wherein the encapsulant (18) comprises polydimethylsiloxane.
Abstract:
Described is a method for producing a semiconductor device (100), in which at least one column-shaped or wall-shaped semiconductor device (10, 20) extending in a main direction (z) is formed on a substrate (30), wherein at least two sections (11, 13, 21, 23) of a first crystal type and one section (12, 22) of a second crystal type therebetween are formed in an active region (40), each section with a respective predetermined height (h1, h2), wherein the first and second crystal types have different lattice constants and each of the sections of the first crystal type has a lattice strain which depends on the lattice constants in the section of the second crystal type. According to the invention, at least a height (h2) of the section (12, 22) of the second crystal type and a lateral thickness (D) of the active region (40) is formed perpendicular to the main direction, in such a manner that the lattice strain in one of the sections (11) of the first crystal type also depends on the lattice constants in the other section (13) of the first crystal type. A semiconductor device (100) is also described, having at least one column-shaped or wall-shaped semiconductor element (10, 20) on a substrate (30), which can be produced in particular by means of the stated method.