Abstract:
The present invention relates to a thin film solar cell enabling sunlight to be incident on a light absorbing layer directly without obstacles by forming a buffer layer, a transparent electrode, and a grid electrode on a lower surface of a CIGS instead of forming the buffer layer and the transparent electrode on the upper part of the light absorbing layer as the thin film solar cell used to be manufactured by forming the buffer layer, the transparent electrode, and the grid electrode on the upper part of the conventional light absorbing layer. Also, the solar cell can shorten the distance of an electron-hole moving to the electrode or the buffer layer, wherein the electron-hole is generated by patterning a first electrode and the buffer layer into a shape to mesh with a tooth structure to absorb light energy.
Abstract:
본 발명은 Se 성분이 포함된 Cu-In-Ga-Se 전구체 박막을 형성한 후 급속 열처리 공정을 수행함으로써 급속 열처리 공정 중 추가적인 Se 공급이 필요하지 않은 CIGS 박막의 제조방법에 관한 것이다. 구체적으로는, 기판에 셀레늄 성분이 포함된 Cu-In-Ga-Se 전구체 박막을 형성하는 단계(단계 a); 상기 단계 a에서 형성된 전구체 박막에 400℃ 초과 600℃ 미만의 온도 및 1∼760 torr의 압력에서 1∼30분 동안 급속 열처리 공정(RTP)을 처리하는 단계(단계 b)를 포함한다. 본 발명에 따르면, CIGS 전구체 박막을 제조하는 과정에서 충분한 양의 Se가 전구체 박막 자체에 포함되게 함으로써 급속 열처리 공정 중 추가적으로 Se를 공급하여야 할 필요가 없으며, 급속 열처리 공정 조건의 제어를 통해 Se 손실을 최소화하여 고결정성의 CIGS 박막을 제공할 수 있다.
Abstract:
PURPOSE: A method for manufacturing a chalcogenide solar cell with a double texture structure formed on the surface of a back electrode, and the chalcogenide solar cell manufactured by the same are provided to increase light capturing performance by forming a front texture and a back texture. CONSTITUTION: A back texture (32) is formed on the surface of a back electrode. A light absorption layer (40) of a chalcogenide semiconductor material is formed on the back electrode. A buffer layer (50) is formed on the light absorption layer. A transparent electrode is formed on the buffer layer. A front texture (62) is formed on the surface of the transparent electrode.
Abstract:
PURPOSE: A solar cell deterioration test chamber and a test method using the same are provided to make an internal chamber environment be a prerequisite for a deterioration test while a solar cell is installed within a chamber for the deterioration test, to make artificial light be not irradiated to the solar cell until a light amount of an artificial light source is stabilized up to a required level for the deterioration test and to make the artificial light be irradiated to the solar cell without changing inner temperature or humidity of the chamber after being stabilized. CONSTITUTION: A solar cell deterioration test chamber includes a chamber housing (201), a light shielding partition (210), a rotary type jig (220) and a temperature control unit. The chamber housing has a light penetration window through which light penetrates. The light shielding partition having an open part divides an internal space of the chamber housing into a first space adjacent to the light penetration window and a second space which is in an opposite side of the first space and shields light penetration from the first space to the second space. The rotary type jig installed to rotate at least 180 degrees in the open part of the light shield partition has a body for shielding light penetration and includes a solar cell for a test object in one surface. The temperature control unit controls the first space and the second space to substantially maintain the same temperature.