Abstract:
A sea-launched and recovered unmanned aircraft is disclosed. The aircraft is jet-powered and has features and systems to maintain watertight integrity such that it may be released from a submerged submarine or dropped into a body of water by a ship or an aircraft. The aircraft is buoyant and remains at or near the water surface before its rockets are ignited. The rockets propel the air vehicle out of the sea and accelerate it to flying speed at which time a jet engine is started and the rockets are jettisoned. The air vehicle performs its mission independently or in conjunction with other ones of the air vehicles. The air vehicle then returns to an assigned splashdown point at sea via, for example, an engine-off “whip-stall” maneuver. A submarine or ship may retrieve the air vehicle and readies it for another mission.
Abstract:
A transmission system that is used in conjunction with a microturbine engine for propelling an aircraft body, such as a propeller-based fixed-wing aircraft or a rotor-based vertical lift aircraft, or for a wide variety of other applications. The output shaft of the microturbine engine preferably operates at a rotational speed in a range between 72,000 RPM and 150,000 RPM with an output power between 150 HP and 5 HP (and most preferably operates in an extended range between 50,000 RPM and 200,000 RPM with an output power between 200 HP and 5 HP). The two reduction stages provide a reduction ratio preferably having a value of at least 19, and most preferably greater than 24. The 1 transmission system is of small-size preferably having a maximum diameter less than twelve inches. The two stages of the transmission system may comprise any one (or parts of) of a number of configurations, including an in-line lay shaft configuration, an in-line star-star configuration an offset star-spur configuration, an offset compound idler configuration, an inline traction-internal gear configuration, and an inline traction planetary gear configuration. Preferably, the input stage of the transmission system is self-equilibrating such that first shaft can be supported without bearings and is operably coupled to the output shaft of the microturbine engine by an outside diameter piloted spline coupling mechanism. For vertical lift applications, a single traction stage along with a bevel gear assembly or other shaft transmission mechanism can be used to provide the necessary RPM reduction.
Abstract:
The flying machine includes a supporting structure including a central rotational support having a vertical axis connected to an essentially horizontal, preferably annular, peripheral support part, coaxial with the central support, at least one upper rotor including a central hub rotatable about the axis of the central support of the supporting structure, an outer channel-section ring supported by the peripheral part of the supporting structure by contactless suspension means, preferably magnetic suspension means, and a plurality of blades which extend from the hub to the channel-section ring and which are inclined with respect to the horizontal plane; and motor devices carried at least partially by the peripheral part of the supporting structure and operable to cause rotation of the rotor with respect to this structure in a predetermined direction.
Abstract:
A vehicular weapons platform (30) including a plurality of barrel assemblies (10), wherein each barrel assembly includes a barrel (11), a plurality of projectiles (14) axially disposed within the barrel for operative sealing engagement with the bore of the barrel (11) and discrete propellant charges (15) for propelling respective projectiles sequentially through the muzzle of the barrel; and at least one of said plurality of barrel assemblies (10) includes a barrel which also forms a structural member of the weapons platform. In one preferred form, the weapons platform takes the form of a small combat aerial vehicle (SCAV) (30), wherein the barrel assemblies (10) form the airframe. A method of constructing a weapons platform from the barrel assemblies is also described.
Abstract:
A circular VTOL aircraft with a central vertically mounted jet or rocket engine 7, (or engines) having below vertical thrust vents 14 at cardinal points, together with a jet rocket engine 20 (or engines) horizontally mounted on turntable pod 16 which is steerable through 360 degrees and centrally situated below the vertical engine (s). Alternatively the horizontal engine can be replaced by central thrust vent 36 delivering thrust from the vertical engine to vectored thrust nozzle 37 attached to the turntable. Thrust from the four vertical thrust vents is controlled by valves 21 giving VTOL thrust control as well as pitch and bank control. The horizontal engine provides acceleration and retro-thrust for horizontal flight and directional control through 360 degrees. The passenger cabin is situated in the main body of the aircraft. Fuel tanks are installed around the central engines. The flight-deck is situated at the top-centre of the craft above the engines, which are detachable for maintenance.
Abstract:
A system that is mountable to an unmanned vehicle and a method of operation is provided. The system includes an attachment plate configured to couple to the unmanned vehicle, the attachment plate having a first feature. A control module is configured to removably couple to the attachment plate, the control module having one or more processors and a power source, the control module having a pin arranged to move from a first position to a second position when the control module is coupled to the attachment plate, the one or more processors being energized when the pin is moved from the first position to the second position. A payload having an energetic element is provided, the payload being coupled to the control module.
Abstract:
A system comprising includes a plurality of three dimensional line-scanner LIDAR sensors disposed to provide a set of fanned beams that travel from one horizon into the air to the other horizon arranged to provide a light fence to detect an object that breaks the light fence and a sensor processor connected to the plurality of three dimensional multi-beam line-scanner LIDAR sensors to establish a vector of travel and a velocity of the object that passes through the multi-beam light fence at the location of where the beams are broken.
Abstract:
An aircraft including a wing system, a plurality of control surfaces, a camera mounted on a camera pod, and a control system. The camera pod is configured to vary the orientation of the camera field of view only in yaw, relative to the aircraft, between a directly forward-looking orientation and a side-looking orientation. The control system controls the control surfaces such that they induce a significant aircraft yaw causing an identified target to be within the field of view of the camera with the camera in the directly forward-looking orientation.
Abstract:
A system comprising an unmanned aerial vehicle (UAV) having wing elements and tail elements configured to roll to angularly orient the UAV by rolling so as to align a longitudinal plane of the UAV, in its late terminal phase, with a target. A method of UAV body re-orientation comprising: (a) determining by a processor a boresight angle error correction value bases on distance between a target point and a boresight point of a body-fixed frame; and (b) effecting a UAV maneuver comprising an angular role rate component translating the target point to a re-oriented target point in the body-fixed frame, to maintain the offset angle via the offset angle correction value.
Abstract:
A system and method for conducting electronic warfare on a target site includes the use of a small unmanned aircraft system (SUAS) having a fuselage and a Prandtl wing, wherein at least two electric ducted fans are positioned on the fuselage. A power system of the SUAS has a plurality of hydrogen fuel cells positioned within the Prandtl wing. An electronic warfare payload is carried by the fuselage, wherein the electronic warfare payload and the at least two electric ducted fans are powered by at least a portion of the plurality of hydrogen fuel cells. During an operation, the SUAS may launch near an IAD site and initiate an electronic warfare effect on an integrated air defense site with electronic warfare payload carried by the SUAS to interfere with at least one surface-to-air missile (SAM) system.