Abstract:
A method for manufacturing a minute silicon mechanical device, which includes the steps of forming a diffusion region by doping a predetermined portion of a silicon substrate with an impurity of high density; forming an epitaxial layer over the silicon substrate including the diffusion region and forming an oxide layer over the epitaxial layer; forming an ohmic contact layer at the lower surface of the silicon substrate; patterning the oxide layer to have a striped configuration at that portion of the oxide layer corresponding to the predetermined portion of the diffusion region, thus exposing a predetermined portion of the epitaxial layer; forming a plurality of beams having a striped configuration by etching the exposed portion of the epitaxial layer, using the oxide layer as a mask and then removing the oxide layer; and removing the diffusion region below the plurality of beams.
Abstract:
A semiconductor accelerometer is formed by attaching a semiconductor layer to a handle wafer by a thick oxide layer. Accelerometer geometry is patterned in the semiconductor layer, which is then used as a mask to etch out a cavity in the underlying thick oxide. The mask may include one or more apertures, so that a mass region will have corresponding apertures to the underlying oxide layer. The structure resulting from an oxide etch has the intended accelerometer geometry of a large volume mass region supported in cantilever fashion by a plurality of piezo-resistive arm regions to a surrounding, supporting portion of the semiconductor layer. Directly beneath this accelerometer geometry is a flex-accommodating cavity realized by the removal of the underlying oxide layer. The semiconductor layer remains attached to the handle wafer by means of the thick oxide layer that surrounds the accelerometer geometry, and which was adequately masked by the surrounding portion of the top semiconductor layer during the oxide etch step. In a second embodiment support arm regions are dimensioned separately from the mass region, using a plurality of buried oxide regions as semiconductor etch stops.
Abstract:
A semiconductor device with a force and/or acceleration sensor (12), which has a spring-mass system (14, 16) responsive to the respective quantity to be measured and whose mass (16) bears via at least one resilient support element (14) on a semiconductor substrate (20). The semiconductor substrate (20) and the spring-mass system (14, 16) are integral components of a monocrystalline semiconductor crystal (10) with a IC-compatible structure. The three-dimensional structural form of the spring-mass system (12) is produced by anisotropic semiconductor etching, defined P/N junctions of the semiconductor layer arrangement functioning as etch stop means in order to more particularly create a gap (22) permitting respective movement of the mass (16) between the mass (16) and the semiconductor substrate (20).
Abstract:
A method for providing a conductive ground plane beneath a suspended microstructure. A conductive region is diffused into a substrate. Two dielectric layers are added: first a thermal silicon dioxide layer and then a silicon nitride layer. A first mask is used to etch a ring partially through the silicon nitride layer. Then, a second mask is used to etch a hole through both dielectric layers in a region having a perimeter that extends between the inner and outer edges of the ring. This leaves the conductive region exposed in an area surrounded by a ring that has the silicon dioxide layer and a narrow silicon nitride layer. The ring is surrounded by an area in which the silicon dioxide and silicon nitride layers have not been reduced. A spacer silicon dioxide layer is deposited over the dielectric and then a polysilicon layer is deposited and formed into the shape of a the suspended microstructure. When the spacer layer is etched away, the silicon dioxide under the narrow silicon nitride layer is removed, along with the narrow silicon nitride layer, leaving an exposed ground plane surrounded by a dielectric with minimal undercutting.
Abstract:
A dissolved wafer process is modified by providing an etch control seal around the perimeter of an etch resistant microstructure, such as a micromechanical or microelectromechanical device, formed on a first substrate. The microstructure is defined and shaped by a surrounding trench in the first substrate. Selected areas of the microstructure and the first substrate are bonded to an etch resistant second substrate. The selected bonding areas may comprise raised areas of the first substrate, or raised areas of the second substrate corresponding to the selected bonding areas of the first substrate. A bonded area forming a ring extending around the perimeter of the microstructure and its defining trench forms an etch control seal. The first substrate of the bonded assembly is dissolved in a selective etch so that the etch resistant microstructure remains attached to the second substrate only at the bonded areas. The etch control seal reduces exposure of the microstructure to the etch by preventing the etch from contacting the microstructure until the etch leaks through the dissolving floor of the trench. This occurs only during the final stages of the wafer dissolution step, thus minimizing exposure of the microstructure to the damaging effects of the etch.
Abstract:
The method of fabrication of a monolithic silicon membrane structure in which the membrane and its supporting framework are constructed from a single ultra thick body of silicon. The fabrication sequence includes the steps of providing a doped membrane layer on the silicon body, forming an apertured mask on the silicon body, and removal of an unwanted silicon region by mechanical grinding and chemical etching to provide a well opening in the silicon body terminating in the doped membrane.
Abstract:
A pressure transducer is composed of a substrate, a pressure sensing diaphragm layer and a support layer interposed between the substrate and the diaphragm layer, and a transduction element for coverting a displacement of the diaphragm layer into an electric signal. The support layer has an opening which is hermetically sandwiched between the substrate and the diaphragm layer so that there is formed sealed internal cavity used as a built-in reference pressure chamber. Preferably, the diaphragm layer includes a perforated inner layer extending over the cavity and a cover layer formed on the inner layer so as to seal the cavity. This transducer is fabricated by a process including a first step of forming the support layer on the substrate, a second step of forming the inner layer of the diaphragm layer on the support layer and forming perforations in the inner layer by etching, a third step of forming the opening in the support layer by etching through the perforations and a fourth step of forming the cover layer on the perforated inner layer to seal the internal cavity.
Abstract:
The invention relates in particular to a method for creating patterns in a layer (410) to be etched, starting from a stack comprising at least the layer (410) to be etched and a masking, layer (420) on top of the layer (410) to be etched, the masking layer (420) having at least one pattern (421), the method comprising at least; a) a step of modifying at least one zone (411) of the layer (410) to be etched via ion implantation (430) vertically in line with said at least one pattern (421); b) at least one sequence of steps comprising: b1) a step of enlarging (440) the at least one pattern (421) in a plane in which the layer (410) to be etched mainly extends; b2) a step of modifying at least one zone (411″, 411″) of the layer (410) to be etched via ion implantation (430) vertically in line with the at least one enlarged pattern (421), the implantation being carried out over a depth less than the implantation depth of the preceding, modification step;) c) a step of removing (461, 462) the modified zones (411, 411′, 41″), the removal comprising a step of etching the modified zones (411, 411′, 411″) selectively with respect to the non-modified zones (412) of the layer (410) to be etched.
Abstract:
The invention relates in particular to a method for producing subsequent patterns in an underlying layer (120), the method comprising at least one step of producing prior patterns in a carbon imprintable layer (110) on top of the underlying layer (120), the production of the prior patterns involving nanoimprinting of the imprintable layer (110) and leave in place a continuous layer formed by the imprintable layer (110) and covering the underlying layer (120), characterized in that it comprises the following step: at least one step of modifying the underlying layer (120) via ion implantation (421) in the underlying layer (120), the implantation (421) being carried out through the imprintable layer (110) comprising the subsequent patterns, the parameters of the implantation (421) being chosen in such a way as to form, in the underlying layer (120), implanted zones (122) and non-implanted zones, the non-implanted zones defining the subsequent patterns and having a geometry that is dependent on the prior patterns.
Abstract:
First, an ion beam is applied to a workpiece to form a tapered hole the side wall of which is inclined. Next, the application of the ion beam is stopped, and then a material gas is introduced from the gas source to the upper surface of the workpiece from an oblique direction to cause gas molecules to be adsorbed to the upper surface of the workpiece and to the upper portion of the side wall of the hole. Next, introduction of the material gas is stopped, and then the ion beam is applied again to the region of the workpiece where the hole is formed. As a result, at the upper portion of the side wall of the hole, film formation occurs using the gas molecules as the material adsorbed to the side wall of the hole, and, at the bottom portion of the hole, etching of the workpiece occurs.