Abstract:
A process for producing a lactam, characterized by subjecting an alicyclic primary amine to an oxidation reaction in the presence of a catalyst comprising silicon oxide; and the catalyst comprising silicon oxide which is for use in the process.
Abstract:
The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Abstract:
Verfahren zur Herstellung von N,N'Carbonylbis-ε-caprolactam durch Umsetzung von ε-Caprolactam mit Phosgen in Gegenwart eines Chlorwasserstoff bindenden Mittels in einem inerten organischen Lösungsmittel und Isolierung des Umsetzungsproduktes aus der Produktlösung, wobei die Isolierung die Schritte umfasst: a) gegebenenfalls Abdestillieren eines Teils des organischen Lösungsmittels von der Produklösung; b) Zugabe von Wasser zu der Produktlösung; c) Entfernung des organischen Lösungsmittels durch azeotrope Destillation, gegebenenfalls unter Ersatz des abdestillierten Wassers, wodurch die Produktlösung an organischem Lösungsmittel verarmt; d) Kristallisieren lassen von N,N'-Carbonylbis-ε-caprolactam aus der an organischem Lösungsmittel verarmten Lösung, wobei eine wässrige Suspension von N,N'-Carbonylbis-ε-caprolactam erhalten wird; und e) Abtrennung des Kristallisats.
Abstract:
The present application describes amidinophenyl-pyrrolidines, -pyrrolines, and -isoxazolidines and derivatives thereof of formula (I), or pharmaceutically acceptable salt forms thereof, wherein one of D and D' may be C(=NH)NH2 and the other H and J and J may be O or CH2, which are useful as inhibitors of factor Xa.
Abstract:
The present invention relates to a method for producing C4-C15 lactams, in which a C1-C10 alkyl nitrite is reacted with a C4-C15 cycloalkane and is exposed during the reaction by means of a light-emitting diode. The thus produced C4-C15 cyclohexanone oxime is then further reacted to a C4-C15 lactam, and the formed C1-C10 alcohol is recycled in the production of the C1-C-10 alkyl nitrite.
Abstract:
In a process for oxidizing a feed comprising cyclohexylbenzene, the feed is contacted with oxygen and an oxidation catalyst in a plurality of reaction zones connected in series, the contacting being conducted under conditions being effective to oxidize part of the cyclohexylbenzene in the feed to cyclohexylbenzene hydroperoxide in each reaction zone. At least one of the plurality of reaction zones has a reaction condition that is different from another of the plurality of reaction zones. The different reaction conditions may include one or more of (a) a progressively decreasing temperature and (b) a progressively increasing oxidation catalyst concentration as the feed flows from one reaction zone to subsequent reaction zones in the series.
Abstract:
Process for producing lactam compounds and Beckmann rearrangement catalysts There is provided a catalyst which is highly active, stable and safe and forms less byproducts for a process for producing a lactam, and a production process. A cycloalkylidene-aminoaxy-1,3,5-triazine compound is provided as a Beckmann rearrangement catalyst and/or a reaction starting material in a reaction process for producing a lactam compound.
Abstract:
Catalytic processes for preparing caprolactam, pipecolinic acid, and their derivatives, from lysine or alpha-amino-epsilon-caprolactam starting materials, and products produced thereby. A process for preparing caprolactam or a derivative thereof, the process comprising contacting a reactant comprising lysine or alpha aminocaprolactam with a catalyst and a gas comprising hydrogen gas, in the presence of a solvent. The catalyst may be provided on a support material, such as a transition metal.
Abstract:
This invention relates to a composition commprising (a) epsilon caprolactam and (b) one or more of 5-[4,5-di(3-carboxypropyl)-2-pyridyl]pentanoic acid or salt or amide, 4-[4,5-di(2-carboxypropyl)-2-pyridyl]-2-methylbutanoic acid or salt or amide, 2-[2-(2-carboxybutyl)-5-(1-carboxypropyl)-4-pyridyl]butanoic acid or salt or amide, 5-[3,5-di(3-carboxypropyl)-2-pyridyl]pentanoic acid or salt or amide, 4-[3,5-di(2-carboxypropyl)-2-pyridyl]-2-methylbutanoic acid or salt or amide, 2-[2-(2-carboxybutyl)-5-(1-carboxypropyl)-3-pyridyl]butanoic acid or salt or amide, 5-amino-4-methylpentanamide, 4-amino-3-ethylbutanamide, 5-[4,5-di(4-hydroxybutyl)-2-pyridyl]pentanol, 4-[4,5-di(2-methoxypropyl)-2-pyridyl]-2-methylbutanol, 2-[2-(2-methoxybutyl)-5-(1-methoxypropyl)-4-pyridyl]butanol, 5-[3,5-di(4-hydroxybutyl)-2-pyridyl]pentanol, 4-[3,5-di(2-methoxypropyl)-2-pyridyl]-2-methylbutanol, 2[2-(2-methoxybutyl)-5-(1-methoxypropyl)-3-pyridyl]butanol, 5-amino-4-methyl-1-pentanol, 5-imino-2-methyl-1-pentanamine, 5-amino-2-methyl-1-pentanol, 5-imino-4-methyl-1-pentanamine and 2-butyl-4,5-dipropylpyridine, wherein the weight ratio of component a) to component b) is at least about 99 to 1. The epsilon caprolactam compositions are useful in the preparation of nylon 6.