Abstract:
The optical source assembly/solar simulator comprises a light source, and a reflector for collecting the light and directing the light in a desired direction. In certain embodiments a spectral filter assembly receives the light from the reflector and blocks at least some of the light at specific wavelengths to produce filtered light. The spectral filter assembly is quickly and easily adjustable to vary the spectral spread of the light in the output beam. A homogenizer receives the filtered light and produces a homogenized beam having a substantially uniform irradiance distribution across the beam's cross-section and a substantially uniform spectral distribution across the beam's cross-section. In certain embodiments, a lens assembly images and sizes the homogenized beam at a point in space where a device to be tested can be placed.
Abstract:
An apparatus for testing reflectivity of a lens includes an integrating sphere, a light source, a moveable carrier, a detector, and a processor. The integrating sphere has a sampling port for permitting light transfer with a lens to be tested and an exit port configured for transmitting light beams reflected by the lens out from the integrating sphere. The light source generates light beams with a wavelength in a certain range and projects the light beams to the lens. The moveable carrier allows a relative movement between the lens and the integrating sphere. The detector includes a light sensor configured for detecting the light intensity transmitted out from the exit port and transforming it into a reflection comparison signal. The processor is configured for comparing a reference signal of light intensity projected to the lens with the reflection comparison signal to obtain reflectivity of the lens.
Abstract:
A hollow sphere with a scattering (e.g., white diffusive) interior surface directs light input from at least one input light source to an exit. In one embodiment, an internal hot mirror and phosphor are positioned to intercept the input light on which visible light is reflected and ultraviolet light is directed to the phosphor for conversion to visible light. The exit has a reflective polarizer that passes light of a selected polarization to an output. Light of other polarization(s) is reflected back into the sphere where it becomes unpolarized because of reflections and may eventually be returned to the exit at the selected polarization.
Abstract:
A system for calibrating a sensor in a vehicle, such as a space capsule or other space borne apparatus, uses an expandable integrating sphere. A sensor in the vehicle measures the energy from an electromagnetic energy source within the integrating sphere through a calibration window. The expandable fluid impermeable integrating sphere expands when filled with a fluid, such that when filled with the fluid, its interior is viewable through the calibration window. The system includes a source of fluid to fill the integrating sphere and a fluid regulator coupled to the vehicle to determine when to supply the fluid to the integrating sphere to maintain an appropriate gas pressure level with the integrating sphere.
Abstract:
A quick attachment device for use in the repeated testing of diode light sources (30) includes a quick attachment module (10) having a fixed location with respect to a testing position (150) for the diodes (30), and a mounting assembly (20) on which each diode (30) is mounted during testing. The quick attachment module (10) includes a quick disconnect fastener and two locating pins (120a and 120b) for securing the mounting assembly (20) for testing, where the two locating pins (120a and 120b) have a locational transition fit connection with the mounting assembly (20). The mounting assembly (20) may further include a thermal-electric cooling device (260) for cooling the diode light sources (30) during testing.
Abstract:
A method for characterizing a surface are disclosed. The system includes a light source optic which direct a beam of light toward the surface. Scattered light and a spectacular beam are reflected from the surface. A collector collects the scattered light and directs the scattered light to a detector. The detector measures the intensity of the scattered light. A shutter is advanced into position to intersect the scattered light and to block a segment not having substantially any anisotropic light scatter. The shutter further passes another segment having substantially all of the anisotropic light scatter. The detector measures the intensity of the passed segment. A roughness ratio indicative of the anisotropic roughness to the isotropic roughness is produced by evaluating the total intensity of the scattered light and the intensity of the passed segment.
Abstract:
A highly reflective coating painting product, particularly suitable as a coating for integrating spheres, comprises a diffusely reflective product such as, for example, barium sulphate, and an acrylic binder or glue, which are dispersed in a liquid vehicle, preferably constituted by a mixture of water and alcohol. The acrylic binder or glue is a product based on acrylic polymer or copolymer the quantity of which in the coating product is between about 1% and 15%, and preferably between 3% and 4%, by weight, relative to the reflective product. The coating product is applied to a surface in successive layers until a thickness of at least 0.5 mm is reached. The surface coated with the product is then subjected to heating, preferably at about 100null C., for about 1 hour.
Abstract:
A prober for measuring the light output of digital devices integrally formed on a single wafer. The prober includes a light-integrating sphere sequentially aligned with selected devices. Each time that a device is aligned with the sphere, the device aligned with the sphere is activated, so that the light output of each device is individually measured. In the disclosed embodiment, the devices are vertical cavity surface emitting lasers (VCSELs) and light emitting diodes (LEDs).
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe With respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
A pixel density detector includes a cylinder (1) having a characteristic of catching incident light, an entrance window (2) provided in a shape of a slit in the longitudinal direction of the cylinder (1), and 2 pieces of light detecting device (4) disposed at a prescribed internal on the cylinder (1) at a prescribed angle against the entrance window (2).