Abstract:
An illumination subsystem configured to provide illumination for a measurement system includes first and second light sources configured to generate light for measurements in different wavelength regimes. The illumination subsystem also includes a TIR prism configured to be moved into and out of an optical path from the first and second light sources to the measurement system. If the TIR prism is positioned out of the optical path, light from only the first light source is directed along the optical path. If the TIR prism is positioned in the optical path, light from only the second light source is directed along the optical path. Various measurement systems are also provided. One measurement system includes an optical subsystem configured to perform measurements of a specimen using light in different wavelength regimes directed along a common optical path. The different wavelength regimes include vacuum ultraviolet, ultraviolet, visible, and near infrared wavelength regimes.
Abstract:
The invention relates to a spectrometer arrangement (10) comprising a spectrometer (14) for producing a spectrum of a first wavelength range of radiation from a radiation source on a detector (42). Said arrangement also comprises: an Echelle grating (36) for the spectral decomposition of the radiation penetrating the spectrometer arrangement (10) in a main dispersion direction (46); a dispersing element (34) for separating the degrees by means of spectral decomposition of the radiation in a transversal dispersion direction (48) which forms an angle with the main dispersion direction of the Echelle grating (36), in such a way that a two-dimensional spectrum (50) can be produced with a plurality of separated degrees (52); an imaging optical element (24, 38) for imaging the radiation penetrating through an inlet gap (20) into the spectrometer arrangement (10), in an image plane (40); and a surface detector (42) comprising a two dimensional arrangement of a plurality of detector elements in the image plane (40). The inventive arrangement is characterised in that another spectrometer (12) comprising at least one other dispersing element (64) and another imaging optical element (60,66) is provided in order to produce a spectrum (68) of a second wavelength range of radiation, which is different from the first wavelength range, from a radiation source on the same detector (42). The spectra can be spatially or temporally separated on the detector.
Abstract:
A method of sensing a process utilizing a sensing apparatus consisting of more than one diode laser having select lasing frequencies, a multiplexer optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic operatively associated with a process chamber which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer. The demultiplexer demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector with the detector being sensitive to one of the select lasing frequencies.
Abstract:
A diode laser spectroscopy gas sensing apparatus having a diode laser with a select lasing frequency, a pitch optic coupled to the diode laser with the pitch optic being operatively associated with a process chamber and oriented to project laser light along a projection beam through the process chamber. This embodiment additionally includes a catch optic in optical communication with the pitch optic to receive the laser light projected through the process chamber and an optical fiber optically coupled to the catch optic. In addition, the catch optic is operatively associated with a catch side alignment mechanism which provides for the alignment of the catch optic with respect to the projection beam to increase a quantity of laser light received by the catch optic from the pitch optic and coupled to the optical fiber and a detector sensitive to the select lasing frequency optically coupled to the optical fiber. The catch side alignment mechanism may consist of means to tilt the catch optic along a first axis and a second axis orthogonal to the first axis with both the first and second axes being approximately orthogonal to the projection beam.
Abstract:
A pitch side optical system for use in diode laser spectroscopy consisting of more than one diode laser having select lasing frequencies with each diode laser being coupled to an end of a distinct input optical fiber. The pitch side optical system further consists of a multiplexer optically coupled to the other end of less than all of the input optical fibers with the multiplexer outputting multiplexed laser light to a pitch side optical fiber. The pitch side optical system further consists of a coupler optically coupled to the far end of the pitch side optical fiber and the far end of an unmultiplexed input optical fiber with the coupler combining the multiplexed laser light and the unmultiplexed laser light and outputting the combined light to a transmission optical fiber. Typically, the coupler is located near the combustion process. The pitch side optical system further consists of a pitch optic coupled to the transmission optical fiber. Typically, all optical fibers used in the pitch side optical system are single mode optical fibers.
Abstract:
A high resolution spectrometer with a large free spectral range comprising an entrance slit for a beam of electromagnetic radiation to be analyzed, a first dispersion device for dispersing the beam to be analyzed into various wavelength components in a first direction, a second dispersion device for dispersing each wavelength component output from the first dispersion device in a second direction, and an imaging device comprising a sensitive detection spectrum surface on which the beam dispersed in the first and second directions is focused, the first dispersion device being an optical filter that varies linearly and has a surface on which the beam to be analyzed is focused, each point on the surface of the filter operating like a pass band filter with a central frequency varying linearly in the first direction.
Abstract:
A spectrometer assembly (10) comprises a light source (11) with a continuous spectrum, a pre-monochromator (2) for generating a spectrum with a relatively small linear dispersion from which a spectral portion is selectable, the spectral bandwidth of such spectral portion being smaller than or equal to the bandwidth of the free spectral range of such order in the echelle spectrum wherein the centre wavelength of the selected spectral interval is measurable with maximum blaze efficiency, an echelle spectrometer (4) with means for wavelength calibration, an entrance slit (21) at the pre-monochromator (2), an intermediate slit assembly (50) with an intermediate slit (3) and a spatially resolving light detector (5) in the exit plane of the spectrometer for the detection of wavelength spectra. The assembly is characterised in that the width of the intermediate slit (3) is larger than the monochromatic image of the entrance slit generated by the pre-monochromator at the location of the intermediate slit, and means for calibrating the pre-monochromator are provided, which are adapted to calibrate the light of the light source with a continuous spectrum on the detector to a reference position.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (64-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially reel by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate change during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
A method for the wavelength calibration of echelle spectra, in which the wavelengths are distributed across number of orders is characterised by the steps: recording of a line-rich reference spectrum with known wavelengths for a number of the lines, determination of the position of a number of peaks of the reference spectrum in the recorded spectrum, selection of at least two first lines of known order, position and wavelength, determination of a wavelength scale for the order in which the known lines lie, by means of a fit function nullm(x), determination of a provisional wavelength scale nullnullm 1(x) for at least one neighbouring order m 1, by means of addition/subtraction of a wavelength difference nullFSR which corresponds to a free spectral region, according to nullm 1 null(x)null0nullm(x)nullFSR with nullFSRnullnullm(x)/m, determination of the wavelengths of lines in said neighbouring order m 1, by means of the provisional wavelength scale null 1(x), replacement of the provisional wavelength of at least two lines by the reference wavelength for said lines as obtained in step (a) and repeat of steps (d) to (g) for at least one further neighbouring order.
Abstract:
A spectrometer measures a spectrum of a light beam supplied from a light source so as to obtain fine information and coarse information of the spectrum easily. This spectrometer has a holographic grating, an Echelle grating, a rotation stage and a line sensor. In the case where a single pass beam is to be detected, a control processing unit controls the rotation stage so as to rotate the Echelle grating from the Littrow arrangement by a predetermined angle &dgr;1. On the other hand, in the case where a double pass beam is to be detected, the control processing unit controls the rotation stage so as to rotate the Echelle grating from the Littrow arrangement by a predetermined angle &dgr;2.